Loading…

Experimental study on the flow structures and dynamics of turbulent Rayleigh-Bénard convection in an annular cell

We conduct an experimental study on the flow structures and dynamics of turbulent Rayleigh-Bénard convection in an annular cell with radius ratio η≃0.5 and aspect ratio Γ≃4. The working fluid is water with a Prandtl number of Pr≃5.4, and the Rayleigh number (Ra) ranges from 5.05×10^{7} to 5.05×10^{8...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2023-06, Vol.107 (6-2), p.065112-065112, Article 065112
Main Authors: Zheng, Ji-Li, Liu, Yu-Lu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We conduct an experimental study on the flow structures and dynamics of turbulent Rayleigh-Bénard convection in an annular cell with radius ratio η≃0.5 and aspect ratio Γ≃4. The working fluid is water with a Prandtl number of Pr≃5.4, and the Rayleigh number (Ra) ranges from 5.05×10^{7} to 5.05×10^{8}. The multithermal-probe method and the particle image velocimetry technique are employed to measure the temperature profiles and the velocity fields, respectively. Two distinct states with multiroll standing waves are observed, which are the quadrupole state (QS) characterized by a four-roll structure and the sextupole state (SS) by a six-roll structure. The scaling exponents of Reynolds number Re with Ra are different for the two states, which are 0.56 for QS and 0.41 for SS. In addition, the standing waves become unstable upon tilting the cell by 1^{∘} in relation to the horizontal plane, and they evolve into traveling waves. At relatively high Ra, for instance, Ra⩾2.55×10^{8}, it is observed that the traveling wave state SS undergoes a transition to the traveling wave state QS. However, the opposite transition from QS to SS is not observed in our experiments. Our findings provide insights into the flow structures and dynamics in the convection flow with rotation symmetry.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.107.065112