Loading…

Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields

This research utilizes waste heat energy as a sustainable energy source to enhance pyroelectric power output by combining pyroelectric nanogenerators with an external pulsed electric field. When the surface temperature of the pyroelectric body varies, applying different pulses of the external electr...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2023-07, Vol.94 (7)
Main Authors: Kumara Sodige, Buddhika Amila, Furuno, Hideto, Trung Ngo, Nguyen Chi, Sugiyama, Hironari, Baba, Masaaki, Niihara, Koichi, Nakayama, Tadachika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-9973f6df114781dfd23973949800c939314b8996894843aef6dbcdf3de78dcd83
container_end_page
container_issue 7
container_start_page
container_title Review of scientific instruments
container_volume 94
creator Kumara Sodige, Buddhika Amila
Furuno, Hideto
Trung Ngo, Nguyen Chi
Sugiyama, Hironari
Baba, Masaaki
Niihara, Koichi
Nakayama, Tadachika
description This research utilizes waste heat energy as a sustainable energy source to enhance pyroelectric power output by combining pyroelectric nanogenerators with an external pulsed electric field. When the surface temperature of the pyroelectric body varies, applying different pulses of the external electric field results in maximum power accumulation. A novel power-generating experimental setup was developed to measure and compute pyroelectric power generation. A standard Fuji ceramic C-9 sample was used to generate pyroelectric energy in a 20 °C temperature range from 120 to 140 °C. The continuous temperature variation frequency was 0.05 Hz, and the pulsed electric field was applied when the temperature rose. Pulses of the electric field with widths of 10, 50, 100, and 200 ms were applied to the sample under different pulse amplitudes, and the amplitude of each pulse was 250, 500, 1000, or 1500 V/mm. The maximum power generated through the application of an external pulsed electric field under the above-mentioned conditions was evaluated. This system had the highest power density of 0.204 mJ cm−2 °C−1 kV−1. In addition, for the lowest input power, the maximum power generation condition was a 10 ms pulse width and an amplitude of 250 V mm−1 in the applied electric field. This state might power smart sensor modules, IoT devices, automobiles, and other waste heat energy applications. Nano-pulse electric field applications may reduce input power to its lowest level, dependent on net-producing power. Therefore, new researchers can use net-generation power efficiency to create a large-scale power source using multiple pyroelectric arrays.
doi_str_mv 10.1063/5.0156854
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839742230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839742230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-9973f6df114781dfd23973949800c939314b8996894843aef6dbcdf3de78dcd83</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgipvTg_-ABLyo0Jk0aZocZcwfMPCiN6FkSbp1tElNWqH_vZmbO3gwl8B7n_fl8QC4xGiKESP32RThjPGMHoExRlwkOUvJMRgjRGjCcspH4CyEDYovw_gUjEhOGaNIjMHH3K6lVaYxtoOuhBK2g3emNqrzlYJLpwdorPGrAa6l_zKhq-wKBrWOE9A0be2GbaHt62A0PMyVlal1OAcnpYyNi_0_Ae-P87fZc7J4fXqZPSwSRSjpEiFyUjJdYkxzjnWpUxIrggqOkBJEEEyXXAjGBeWUSBPtUumSaJNzrTQnE3Czy229--zjjkVTBWXqWlrj-lCkPAbSNCUo0us_dON6b-N2PyqjQqQiqtudUt6F4E1ZtL5qpB8KjIrtyYus2J882qt9Yr9sjD7I3xtHcLcDQVWd7Cpn_0n7BulkiE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839549929</pqid></control><display><type>article</type><title>Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Kumara Sodige, Buddhika Amila ; Furuno, Hideto ; Trung Ngo, Nguyen Chi ; Sugiyama, Hironari ; Baba, Masaaki ; Niihara, Koichi ; Nakayama, Tadachika</creator><creatorcontrib>Kumara Sodige, Buddhika Amila ; Furuno, Hideto ; Trung Ngo, Nguyen Chi ; Sugiyama, Hironari ; Baba, Masaaki ; Niihara, Koichi ; Nakayama, Tadachika</creatorcontrib><description>This research utilizes waste heat energy as a sustainable energy source to enhance pyroelectric power output by combining pyroelectric nanogenerators with an external pulsed electric field. When the surface temperature of the pyroelectric body varies, applying different pulses of the external electric field results in maximum power accumulation. A novel power-generating experimental setup was developed to measure and compute pyroelectric power generation. A standard Fuji ceramic C-9 sample was used to generate pyroelectric energy in a 20 °C temperature range from 120 to 140 °C. The continuous temperature variation frequency was 0.05 Hz, and the pulsed electric field was applied when the temperature rose. Pulses of the electric field with widths of 10, 50, 100, and 200 ms were applied to the sample under different pulse amplitudes, and the amplitude of each pulse was 250, 500, 1000, or 1500 V/mm. The maximum power generated through the application of an external pulsed electric field under the above-mentioned conditions was evaluated. This system had the highest power density of 0.204 mJ cm−2 °C−1 kV−1. In addition, for the lowest input power, the maximum power generation condition was a 10 ms pulse width and an amplitude of 250 V mm−1 in the applied electric field. This state might power smart sensor modules, IoT devices, automobiles, and other waste heat energy applications. Nano-pulse electric field applications may reduce input power to its lowest level, dependent on net-producing power. Therefore, new researchers can use net-generation power efficiency to create a large-scale power source using multiple pyroelectric arrays.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0156854</identifier><identifier>PMID: 37466409</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amplitudes ; Electric fields ; Energy harvesting ; Frequency variation ; Maximum power ; Nanogenerators ; Power efficiency ; Power management ; Power sources ; Pulse duration ; Scientific apparatus &amp; instruments ; Smart sensors ; Waste heat</subject><ispartof>Review of scientific instruments, 2023-07, Vol.94 (7)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-9973f6df114781dfd23973949800c939314b8996894843aef6dbcdf3de78dcd83</cites><orcidid>0000-0002-5859-242X ; 0000-0002-0877-7792 ; 0000-0003-2310-4331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0156854$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37466409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumara Sodige, Buddhika Amila</creatorcontrib><creatorcontrib>Furuno, Hideto</creatorcontrib><creatorcontrib>Trung Ngo, Nguyen Chi</creatorcontrib><creatorcontrib>Sugiyama, Hironari</creatorcontrib><creatorcontrib>Baba, Masaaki</creatorcontrib><creatorcontrib>Niihara, Koichi</creatorcontrib><creatorcontrib>Nakayama, Tadachika</creatorcontrib><title>Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>This research utilizes waste heat energy as a sustainable energy source to enhance pyroelectric power output by combining pyroelectric nanogenerators with an external pulsed electric field. When the surface temperature of the pyroelectric body varies, applying different pulses of the external electric field results in maximum power accumulation. A novel power-generating experimental setup was developed to measure and compute pyroelectric power generation. A standard Fuji ceramic C-9 sample was used to generate pyroelectric energy in a 20 °C temperature range from 120 to 140 °C. The continuous temperature variation frequency was 0.05 Hz, and the pulsed electric field was applied when the temperature rose. Pulses of the electric field with widths of 10, 50, 100, and 200 ms were applied to the sample under different pulse amplitudes, and the amplitude of each pulse was 250, 500, 1000, or 1500 V/mm. The maximum power generated through the application of an external pulsed electric field under the above-mentioned conditions was evaluated. This system had the highest power density of 0.204 mJ cm−2 °C−1 kV−1. In addition, for the lowest input power, the maximum power generation condition was a 10 ms pulse width and an amplitude of 250 V mm−1 in the applied electric field. This state might power smart sensor modules, IoT devices, automobiles, and other waste heat energy applications. Nano-pulse electric field applications may reduce input power to its lowest level, dependent on net-producing power. Therefore, new researchers can use net-generation power efficiency to create a large-scale power source using multiple pyroelectric arrays.</description><subject>Amplitudes</subject><subject>Electric fields</subject><subject>Energy harvesting</subject><subject>Frequency variation</subject><subject>Maximum power</subject><subject>Nanogenerators</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Power sources</subject><subject>Pulse duration</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Smart sensors</subject><subject>Waste heat</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90M9LwzAUB_AgipvTg_-ABLyo0Jk0aZocZcwfMPCiN6FkSbp1tElNWqH_vZmbO3gwl8B7n_fl8QC4xGiKESP32RThjPGMHoExRlwkOUvJMRgjRGjCcspH4CyEDYovw_gUjEhOGaNIjMHH3K6lVaYxtoOuhBK2g3emNqrzlYJLpwdorPGrAa6l_zKhq-wKBrWOE9A0be2GbaHt62A0PMyVlal1OAcnpYyNi_0_Ae-P87fZc7J4fXqZPSwSRSjpEiFyUjJdYkxzjnWpUxIrggqOkBJEEEyXXAjGBeWUSBPtUumSaJNzrTQnE3Czy229--zjjkVTBWXqWlrj-lCkPAbSNCUo0us_dON6b-N2PyqjQqQiqtudUt6F4E1ZtL5qpB8KjIrtyYus2J882qt9Yr9sjD7I3xtHcLcDQVWd7Cpn_0n7BulkiE4</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Kumara Sodige, Buddhika Amila</creator><creator>Furuno, Hideto</creator><creator>Trung Ngo, Nguyen Chi</creator><creator>Sugiyama, Hironari</creator><creator>Baba, Masaaki</creator><creator>Niihara, Koichi</creator><creator>Nakayama, Tadachika</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5859-242X</orcidid><orcidid>https://orcid.org/0000-0002-0877-7792</orcidid><orcidid>https://orcid.org/0000-0003-2310-4331</orcidid></search><sort><creationdate>20230701</creationdate><title>Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields</title><author>Kumara Sodige, Buddhika Amila ; Furuno, Hideto ; Trung Ngo, Nguyen Chi ; Sugiyama, Hironari ; Baba, Masaaki ; Niihara, Koichi ; Nakayama, Tadachika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-9973f6df114781dfd23973949800c939314b8996894843aef6dbcdf3de78dcd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitudes</topic><topic>Electric fields</topic><topic>Energy harvesting</topic><topic>Frequency variation</topic><topic>Maximum power</topic><topic>Nanogenerators</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Power sources</topic><topic>Pulse duration</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Smart sensors</topic><topic>Waste heat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumara Sodige, Buddhika Amila</creatorcontrib><creatorcontrib>Furuno, Hideto</creatorcontrib><creatorcontrib>Trung Ngo, Nguyen Chi</creatorcontrib><creatorcontrib>Sugiyama, Hironari</creatorcontrib><creatorcontrib>Baba, Masaaki</creatorcontrib><creatorcontrib>Niihara, Koichi</creatorcontrib><creatorcontrib>Nakayama, Tadachika</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumara Sodige, Buddhika Amila</au><au>Furuno, Hideto</au><au>Trung Ngo, Nguyen Chi</au><au>Sugiyama, Hironari</au><au>Baba, Masaaki</au><au>Niihara, Koichi</au><au>Nakayama, Tadachika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>94</volume><issue>7</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>This research utilizes waste heat energy as a sustainable energy source to enhance pyroelectric power output by combining pyroelectric nanogenerators with an external pulsed electric field. When the surface temperature of the pyroelectric body varies, applying different pulses of the external electric field results in maximum power accumulation. A novel power-generating experimental setup was developed to measure and compute pyroelectric power generation. A standard Fuji ceramic C-9 sample was used to generate pyroelectric energy in a 20 °C temperature range from 120 to 140 °C. The continuous temperature variation frequency was 0.05 Hz, and the pulsed electric field was applied when the temperature rose. Pulses of the electric field with widths of 10, 50, 100, and 200 ms were applied to the sample under different pulse amplitudes, and the amplitude of each pulse was 250, 500, 1000, or 1500 V/mm. The maximum power generated through the application of an external pulsed electric field under the above-mentioned conditions was evaluated. This system had the highest power density of 0.204 mJ cm−2 °C−1 kV−1. In addition, for the lowest input power, the maximum power generation condition was a 10 ms pulse width and an amplitude of 250 V mm−1 in the applied electric field. This state might power smart sensor modules, IoT devices, automobiles, and other waste heat energy applications. Nano-pulse electric field applications may reduce input power to its lowest level, dependent on net-producing power. Therefore, new researchers can use net-generation power efficiency to create a large-scale power source using multiple pyroelectric arrays.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37466409</pmid><doi>10.1063/5.0156854</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5859-242X</orcidid><orcidid>https://orcid.org/0000-0002-0877-7792</orcidid><orcidid>https://orcid.org/0000-0003-2310-4331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2023-07, Vol.94 (7)
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_2839742230
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会)
subjects Amplitudes
Electric fields
Energy harvesting
Frequency variation
Maximum power
Nanogenerators
Power efficiency
Power management
Power sources
Pulse duration
Scientific apparatus & instruments
Smart sensors
Waste heat
title Enhancement of a pyroelectric body energy harvesting scheme employing pulsed electric fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20a%20pyroelectric%20body%20energy%20harvesting%20scheme%20employing%20pulsed%20electric%20fields&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kumara%20Sodige,%20Buddhika%20Amila&rft.date=2023-07-01&rft.volume=94&rft.issue=7&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0156854&rft_dat=%3Cproquest_scita%3E2839742230%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-9973f6df114781dfd23973949800c939314b8996894843aef6dbcdf3de78dcd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839549929&rft_id=info:pmid/37466409&rfr_iscdi=true