Loading…

Minimal structures for symmetric FIR filters of arbitrary length

It is shown that, even in the very basic direct-form symmetric FIR (finite impulse response) filter structure, redundancy exists in terms of additive complexity. Methods for removing it are presented. A conventional direct-form implementation of an L-tap symmetric FIR filter requires L/2 or (L+1)/2...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1993-05, Vol.41 (5), p.1790-1808
Main Author: Mou, Z.-J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is shown that, even in the very basic direct-form symmetric FIR (finite impulse response) filter structure, redundancy exists in terms of additive complexity. Methods for removing it are presented. A conventional direct-form implementation of an L-tap symmetric FIR filter requires L/2 or (L+1)/2 multiplications, L-1 additions, and L-1 delay units. The symmetry is exploited in such a way that the number of additions is significantly reduced, while the number of multiplications and the memory requirement remain the same. It is shown that the additive complexity can be reduced nearly to L/2. A complete solution is provided, for any L, to the derivation of the filter structure that requires the minimal number of additions, L/2 or (L+1)/2 multiplications, and L-1 delay units. Thus a new class of structures and algorithms for symmetric FIR filters is obtained.< >
ISSN:1053-587X
1941-0476
DOI:10.1109/78.215300