Loading…

An algorithm for simultaneous stabilization using decentralized constant gain output feedback

An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models eac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1993-03, Vol.38 (3), p.450-455
Main Authors: Broussard, J.R., McLean, C.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53
cites cdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53
container_end_page 455
container_issue 3
container_start_page 450
container_title IEEE transactions on automatic control
container_volume 38
creator Broussard, J.R.
McLean, C.S.
description An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.< >
doi_str_mv 10.1109/9.210143
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28404755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>210143</ieee_id><sourcerecordid>26141317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</originalsourceid><addsrcrecordid>eNqN0UtLxDAUBeAgCo4PcO0qCxE31dwkTdLlMPgCwY0upaRpMkbbdEzShf56Kx1m7Src3I8Dl4PQGZBrAFLdVNcUCHC2hxZQlqqgJWX7aEEIqKKiShyio5Q-plFwDgv0tgxYd-sh-vzeYzdEnHw_dlkHO4wJp6wb3_kfnf0Q8Jh8WOPWGhty1NO3bbEZwoRCxmvtAx7GvBkzdta2jTafJ-jA6S7Z0-17jF7vbl9WD8XT8_3javlUGCZELlpetqWsFNOEa8GcZNZJB45XIC2jtK04yNYxTpikvOGtoYo3RrNSNQBNyY7R5Zy7icPXaFOue5-M7br5jJqqSgou6D8gJ1yW_0gUwIGBnODVDE0cUorW1Zvoex2_ayD1XyN1Vc-NTPRim6mT0Z2LOhifdp4LpaaWJnY-M2-t3W23Gb_hY5L4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26141317</pqid></control><display><type>article</type><title>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</title><source>IEEE Xplore (Online service)</source><creator>Broussard, J.R. ; McLean, C.S.</creator><creatorcontrib>Broussard, J.R. ; McLean, C.S.</creatorcontrib><description>An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.210143</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Cost function ; Design optimization ; Distributed control ; Exact sciences and technology ; Feedback control ; Force feedback ; Instruments ; Optimal control ; Output feedback ; Scheduling algorithm ; State feedback</subject><ispartof>IEEE transactions on automatic control, 1993-03, Vol.38 (3), p.450-455</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</citedby><cites>FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/210143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4688018$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Broussard, J.R.</creatorcontrib><creatorcontrib>McLean, C.S.</creatorcontrib><title>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.&lt; &gt;</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Design optimization</subject><subject>Distributed control</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Force feedback</subject><subject>Instruments</subject><subject>Optimal control</subject><subject>Output feedback</subject><subject>Scheduling algorithm</subject><subject>State feedback</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLxDAUBeAgCo4PcO0qCxE31dwkTdLlMPgCwY0upaRpMkbbdEzShf56Kx1m7Src3I8Dl4PQGZBrAFLdVNcUCHC2hxZQlqqgJWX7aEEIqKKiShyio5Q-plFwDgv0tgxYd-sh-vzeYzdEnHw_dlkHO4wJp6wb3_kfnf0Q8Jh8WOPWGhty1NO3bbEZwoRCxmvtAx7GvBkzdta2jTafJ-jA6S7Z0-17jF7vbl9WD8XT8_3javlUGCZELlpetqWsFNOEa8GcZNZJB45XIC2jtK04yNYxTpikvOGtoYo3RrNSNQBNyY7R5Zy7icPXaFOue5-M7br5jJqqSgou6D8gJ1yW_0gUwIGBnODVDE0cUorW1Zvoex2_ayD1XyN1Vc-NTPRim6mT0Z2LOhifdp4LpaaWJnY-M2-t3W23Gb_hY5L4</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Broussard, J.R.</creator><creator>McLean, C.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930301</creationdate><title>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</title><author>Broussard, J.R. ; McLean, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Design optimization</topic><topic>Distributed control</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Force feedback</topic><topic>Instruments</topic><topic>Optimal control</topic><topic>Output feedback</topic><topic>Scheduling algorithm</topic><topic>State feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broussard, J.R.</creatorcontrib><creatorcontrib>McLean, C.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broussard, J.R.</au><au>McLean, C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1993-03-01</date><risdate>1993</risdate><volume>38</volume><issue>3</issue><spage>450</spage><epage>455</epage><pages>450-455</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.210143</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1993-03, Vol.38 (3), p.450-455
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28404755
source IEEE Xplore (Online service)
subjects Applied sciences
Computer science
control theory
systems
Control system synthesis
Control theory. Systems
Cost function
Design optimization
Distributed control
Exact sciences and technology
Feedback control
Force feedback
Instruments
Optimal control
Output feedback
Scheduling algorithm
State feedback
title An algorithm for simultaneous stabilization using decentralized constant gain output feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20for%20simultaneous%20stabilization%20using%20decentralized%20constant%20gain%20output%20feedback&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Broussard,%20J.R.&rft.date=1993-03-01&rft.volume=38&rft.issue=3&rft.spage=450&rft.epage=455&rft.pages=450-455&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.210143&rft_dat=%3Cproquest_cross%3E26141317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26141317&rft_id=info:pmid/&rft_ieee_id=210143&rfr_iscdi=true