Loading…
An algorithm for simultaneous stabilization using decentralized constant gain output feedback
An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models eac...
Saved in:
Published in: | IEEE transactions on automatic control 1993-03, Vol.38 (3), p.450-455 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53 |
container_end_page | 455 |
container_issue | 3 |
container_start_page | 450 |
container_title | IEEE transactions on automatic control |
container_volume | 38 |
creator | Broussard, J.R. McLean, C.S. |
description | An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.< > |
doi_str_mv | 10.1109/9.210143 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28404755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>210143</ieee_id><sourcerecordid>26141317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</originalsourceid><addsrcrecordid>eNqN0UtLxDAUBeAgCo4PcO0qCxE31dwkTdLlMPgCwY0upaRpMkbbdEzShf56Kx1m7Src3I8Dl4PQGZBrAFLdVNcUCHC2hxZQlqqgJWX7aEEIqKKiShyio5Q-plFwDgv0tgxYd-sh-vzeYzdEnHw_dlkHO4wJp6wb3_kfnf0Q8Jh8WOPWGhty1NO3bbEZwoRCxmvtAx7GvBkzdta2jTafJ-jA6S7Z0-17jF7vbl9WD8XT8_3javlUGCZELlpetqWsFNOEa8GcZNZJB45XIC2jtK04yNYxTpikvOGtoYo3RrNSNQBNyY7R5Zy7icPXaFOue5-M7br5jJqqSgou6D8gJ1yW_0gUwIGBnODVDE0cUorW1Zvoex2_ayD1XyN1Vc-NTPRim6mT0Z2LOhifdp4LpaaWJnY-M2-t3W23Gb_hY5L4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26141317</pqid></control><display><type>article</type><title>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</title><source>IEEE Xplore (Online service)</source><creator>Broussard, J.R. ; McLean, C.S.</creator><creatorcontrib>Broussard, J.R. ; McLean, C.S.</creatorcontrib><description>An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.210143</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Cost function ; Design optimization ; Distributed control ; Exact sciences and technology ; Feedback control ; Force feedback ; Instruments ; Optimal control ; Output feedback ; Scheduling algorithm ; State feedback</subject><ispartof>IEEE transactions on automatic control, 1993-03, Vol.38 (3), p.450-455</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</citedby><cites>FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/210143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4688018$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Broussard, J.R.</creatorcontrib><creatorcontrib>McLean, C.S.</creatorcontrib><title>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.< ></description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Design optimization</subject><subject>Distributed control</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Force feedback</subject><subject>Instruments</subject><subject>Optimal control</subject><subject>Output feedback</subject><subject>Scheduling algorithm</subject><subject>State feedback</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLxDAUBeAgCo4PcO0qCxE31dwkTdLlMPgCwY0upaRpMkbbdEzShf56Kx1m7Src3I8Dl4PQGZBrAFLdVNcUCHC2hxZQlqqgJWX7aEEIqKKiShyio5Q-plFwDgv0tgxYd-sh-vzeYzdEnHw_dlkHO4wJp6wb3_kfnf0Q8Jh8WOPWGhty1NO3bbEZwoRCxmvtAx7GvBkzdta2jTafJ-jA6S7Z0-17jF7vbl9WD8XT8_3javlUGCZELlpetqWsFNOEa8GcZNZJB45XIC2jtK04yNYxTpikvOGtoYo3RrNSNQBNyY7R5Zy7icPXaFOue5-M7br5jJqqSgou6D8gJ1yW_0gUwIGBnODVDE0cUorW1Zvoex2_ayD1XyN1Vc-NTPRim6mT0Z2LOhifdp4LpaaWJnY-M2-t3W23Gb_hY5L4</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Broussard, J.R.</creator><creator>McLean, C.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930301</creationdate><title>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</title><author>Broussard, J.R. ; McLean, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Design optimization</topic><topic>Distributed control</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Force feedback</topic><topic>Instruments</topic><topic>Optimal control</topic><topic>Output feedback</topic><topic>Scheduling algorithm</topic><topic>State feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broussard, J.R.</creatorcontrib><creatorcontrib>McLean, C.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broussard, J.R.</au><au>McLean, C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm for simultaneous stabilization using decentralized constant gain output feedback</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1993-03-01</date><risdate>1993</risdate><volume>38</volume><issue>3</issue><spage>450</spage><epage>455</epage><pages>450-455</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>An algorithm which solves, numerically, the simultaneous stabilization problem using a constant gain decentralized control law is presented. The algorithm is determined from the necessary conditions for minimizing an optimal control problem. The optimal control problem consists of n plant models each with its own cost function. The costs are summed to create an average cost function and equality constraints are added to yield the decentralized control structure. The algorithm can start with any stabilizing full state feedback gain for each model and will converge to the optimal constant feedback gain for all models assuming a solution exists. Examples of the algorithm are given for Kharitonov synthesis and optimal gain scheduled control law synthesis using output feedback.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.210143</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1993-03, Vol.38 (3), p.450-455 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28404755 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Cost function Design optimization Distributed control Exact sciences and technology Feedback control Force feedback Instruments Optimal control Output feedback Scheduling algorithm State feedback |
title | An algorithm for simultaneous stabilization using decentralized constant gain output feedback |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20for%20simultaneous%20stabilization%20using%20decentralized%20constant%20gain%20output%20feedback&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Broussard,%20J.R.&rft.date=1993-03-01&rft.volume=38&rft.issue=3&rft.spage=450&rft.epage=455&rft.pages=450-455&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.210143&rft_dat=%3Cproquest_cross%3E26141317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-d45d57983a04a63f73ef7f1f4917e322d9417df3403724b4dc284bca358b11b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26141317&rft_id=info:pmid/&rft_ieee_id=210143&rfr_iscdi=true |