Loading…

Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors

The rapid development of flexible sensors has greatly increased the demand for high-performance hydrogels. However, it remains a challenge to fabricate flexible hydrogel sensors with high stretching, low hysteresis, excellent adhesion, good conductivity, sensing characteristics and bacteriostatic fu...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2023-10, Vol.318, p.121106-121106, Article 121106
Main Authors: Wang, Yingjie, Song, Linmeng, Wang, Qi, Wang, Lu, Li, Shiya, Du, HongChao, Wang, Chenchen, Wang, Yifan, Xue, Peng, Nie, Wu-Cheng, Wang, Xuedong, Tang, Shaojian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid development of flexible sensors has greatly increased the demand for high-performance hydrogels. However, it remains a challenge to fabricate flexible hydrogel sensors with high stretching, low hysteresis, excellent adhesion, good conductivity, sensing characteristics and bacteriostatic function in a simple way. Herein, a highly conducting double network hydrogel is presented by incorporating lithium chloride (LiCl) into the hydrogel consisting of poly (2-acrylamide-2-methylpropanesulfonic acid/acrylamide/acrylic acid) (3A) network and acetylated distarch phosphate (ADSP). The addition of ADSP not only formed hydrogen bonds with 3A to improve the toughness of the hydrogel but also plays the role of “physical cross-linking” in 3A by “anchoring” the polymer molecular chains together. Tuning the composition of the hydrogel allows the attainment of the best functions, such as high stretchability (∼770 %), ultralow hysteresis (2.2 %, ε = 100 %), excellent electrical conductivity (2.9 S/m), strain sensitivity (GF = 3.0 at 200–500 % strain) and fast response (96 ms). Based on the above performance, the 3A/ADSP/LiCl hydrogel strain sensor can repeatedly and stably detect and monitor large-scale human movements and subtle sensing signals. In addition, the 3A/ADSP/LiCl hydrogel shows a good biocompatibility and bacteriostatic ability. This work provides an effective strategy for constructing the conductive hydrogels for wearable devices and flexible sensors. [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.121106