Loading…

Amp-vortex edge-camera: a lensless multi-modality imaging system with edge enhancement

We demonstrate a lensless imaging system with edge-enhanced imaging constructed with a Fresnel zone aperture (FZA) mask placed 3 mm away from a CMOS sensor. We propose vortex back-propagation (vortex-BP) and amplitude vortex-BP algorithms for the FZA-based lensless imaging system to remove the noise...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2023-07, Vol.31 (14), p.22519-22531
Main Authors: Li, Lina, Ma, Jianshe, Sun, Da, Tian, Zhanquan, Cao, Liangcai, Su, Ping
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate a lensless imaging system with edge-enhanced imaging constructed with a Fresnel zone aperture (FZA) mask placed 3 mm away from a CMOS sensor. We propose vortex back-propagation (vortex-BP) and amplitude vortex-BP algorithms for the FZA-based lensless imaging system to remove the noise and achieve the fast reconstruction of high contrast edge enhancement. Directionally controlled anisotropic edge enhancement can be achieved with our proposed superimposed vortex-BP algorithm. With different reconstruction algorithms, the proposed amp-vortex edge-camera in this paper can achieve 2D bright filed imaging, isotropic, and directional controllable anisotropic edge-enhanced imaging with incoherent light illumination, by a single-shot captured hologram. The effect of edge detection is the same as optical edge detection, which is the re-distribution of light energy. Noise-free in-focus edge detection can be achieved by using back-propagation, without a de-noise algorithm, which is an advantage over other lensless imaging technologies. This is expected to be widely used in autonomous driving, artificial intelligence recognition in consumer electronics, etc.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.491380