Loading…

Anthrol reductases: discovery, role in biosynthesis and applications in natural product syntheses

Covering: up to 2023 Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC inv...

Full description

Saved in:
Bibliographic Details
Published in:Natural product reports 2023-10, Vol.4 (1), p.1672-1686
Main Authors: Rajput, Anshul, Manna, Tanaya, Husain, Syed Masood
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Covering: up to 2023 Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC involved in monodictyphenone biosynthesis of Aspergillus nidulans and provided access to ( R )-dihydroanthracenone, a putative biosynthetic intermediate. This facilitated the identification of several MdpC-related enzymes involved in the biosynthesis of aflatoxins B1, cladofulvin, neosartorin, agnestins and bisanthraquinones. Because of their ability to catalyze the reduction of hydroanthraquinone (anthrols) using NADPH, they were named anthrol reductases. This review provides a comprehensive summary of all the anthrol reductases that have been identified and characterized in the last decade along with their role in the biosynthesis of natural products. In addition, the applications of these enzymes towards the chemoenzymatic synthesis of flavoskyrins, modified bisanthraquinones, 3-deoxy anthraquinones, chiral cycloketones and β-halohydrins have been discussed. The review highlights the identification and characterization of a new class of enzymes called anthrol reductases along with their role in biosyntheses and utilization towards natural product syntheses.
ISSN:0265-0568
1460-4752
DOI:10.1039/d3np00027c