Loading…

Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions

We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2004-03, Vol.194 (2), p.395-408
Main Authors: Visher, John, Wandzura, Stephen, White, Amanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3
cites cdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3
container_end_page 408
container_issue 2
container_start_page 395
container_title Journal of computational physics
container_volume 194
creator Visher, John
Wandzura, Stephen
White, Amanda
description We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the discretization of the evolution formula rather than on its form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.
doi_str_mv 10.1016/j.jcp.2003.09.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28410409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999103004881</els_id><sourcerecordid>28410409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB8fwFsuetFdZ7KP7uJJii8QPKjgLaTJxKZsNzXZVvTTG63gzcMwzPCbx__P2BFCjoD1-Tyf62UuAIoc2hxEs8VGCC1kYoz1NhsBCMzatsVdthfjHACaqmxG7OVxUNOOzvjMvc4yHwwFblzUgQb3qQbne2594LT23eqn8pYPM-Lvak2c3lYbxPUc-WkK4xbUx9SKB2zHqi7S4W_eZ8_XV0-T2-z-4eZucnmf6VKMh6xoTCHMtLW6Ho-NTQKsQQ1aKGUUTXVjQFDR0BS1NaYqEGusNRaFFqW1xhb77GSzdxn824riIBfpfeo61ZNfRSmaEqGENoG4AXXwMQaychncQoUPiSC_PZRzmTyU3x5KaGXyMM0c_y5XUavOBtVrF_8Gq1oIqKrEXWw4SkrXjoKM2lGvybhAepDGu3-ufAFv44eR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28410409</pqid></control><display><type>article</type><title>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Visher, John ; Wandzura, Stephen ; White, Amanda</creator><creatorcontrib>Visher, John ; Wandzura, Stephen ; White, Amanda</creatorcontrib><description>We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the discretization of the evolution formula rather than on its form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2003.09.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Exact sciences and technology ; Mathematical methods in physics ; Physics ; Small-cell problem ; Stability</subject><ispartof>Journal of computational physics, 2004-03, Vol.194 (2), p.395-408</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</citedby><cites>FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15622055$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Visher, John</creatorcontrib><creatorcontrib>Wandzura, Stephen</creatorcontrib><creatorcontrib>White, Amanda</creatorcontrib><title>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</title><title>Journal of computational physics</title><description>We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the discretization of the evolution formula rather than on its form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Small-cell problem</subject><subject>Stability</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWB8fwFsuetFdZ7KP7uJJii8QPKjgLaTJxKZsNzXZVvTTG63gzcMwzPCbx__P2BFCjoD1-Tyf62UuAIoc2hxEs8VGCC1kYoz1NhsBCMzatsVdthfjHACaqmxG7OVxUNOOzvjMvc4yHwwFblzUgQb3qQbne2594LT23eqn8pYPM-Lvak2c3lYbxPUc-WkK4xbUx9SKB2zHqi7S4W_eZ8_XV0-T2-z-4eZucnmf6VKMh6xoTCHMtLW6Ho-NTQKsQQ1aKGUUTXVjQFDR0BS1NaYqEGusNRaFFqW1xhb77GSzdxn824riIBfpfeo61ZNfRSmaEqGENoG4AXXwMQaychncQoUPiSC_PZRzmTyU3x5KaGXyMM0c_y5XUavOBtVrF_8Gq1oIqKrEXWw4SkrXjoKM2lGvybhAepDGu3-ufAFv44eR</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Visher, John</creator><creator>Wandzura, Stephen</creator><creator>White, Amanda</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</title><author>Visher, John ; Wandzura, Stephen ; White, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Small-cell problem</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Visher, John</creatorcontrib><creatorcontrib>Wandzura, Stephen</creatorcontrib><creatorcontrib>White, Amanda</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visher, John</au><au>Wandzura, Stephen</au><au>White, Amanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</atitle><jtitle>Journal of computational physics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>194</volume><issue>2</issue><spage>395</spage><epage>408</epage><pages>395-408</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the discretization of the evolution formula rather than on its form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2003.09.028</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2004-03, Vol.194 (2), p.395-408
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_28410409
source ScienceDirect Freedom Collection 2022-2024
subjects Computational techniques
Exact sciences and technology
Mathematical methods in physics
Physics
Small-cell problem
Stability
title Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable,%20high-order%20discretization%20for%20evolution%20of%20the%20wave%20equation%20in%201%20+%201%20dimensions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Visher,%20John&rft.date=2004-03-01&rft.volume=194&rft.issue=2&rft.spage=395&rft.epage=408&rft.pages=395-408&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2003.09.028&rft_dat=%3Cproquest_cross%3E28410409%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28410409&rft_id=info:pmid/&rfr_iscdi=true