Loading…
Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions
We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from t...
Saved in:
Published in: | Journal of computational physics 2004-03, Vol.194 (2), p.395-408 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3 |
container_end_page | 408 |
container_issue | 2 |
container_start_page | 395 |
container_title | Journal of computational physics |
container_volume | 194 |
creator | Visher, John Wandzura, Stephen White, Amanda |
description | We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the
discretization of the evolution formula rather than on its
form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions. |
doi_str_mv | 10.1016/j.jcp.2003.09.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28410409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999103004881</els_id><sourcerecordid>28410409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB8fwFsuetFdZ7KP7uJJii8QPKjgLaTJxKZsNzXZVvTTG63gzcMwzPCbx__P2BFCjoD1-Tyf62UuAIoc2hxEs8VGCC1kYoz1NhsBCMzatsVdthfjHACaqmxG7OVxUNOOzvjMvc4yHwwFblzUgQb3qQbne2594LT23eqn8pYPM-Lvak2c3lYbxPUc-WkK4xbUx9SKB2zHqi7S4W_eZ8_XV0-T2-z-4eZucnmf6VKMh6xoTCHMtLW6Ho-NTQKsQQ1aKGUUTXVjQFDR0BS1NaYqEGusNRaFFqW1xhb77GSzdxn824riIBfpfeo61ZNfRSmaEqGENoG4AXXwMQaychncQoUPiSC_PZRzmTyU3x5KaGXyMM0c_y5XUavOBtVrF_8Gq1oIqKrEXWw4SkrXjoKM2lGvybhAepDGu3-ufAFv44eR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28410409</pqid></control><display><type>article</type><title>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Visher, John ; Wandzura, Stephen ; White, Amanda</creator><creatorcontrib>Visher, John ; Wandzura, Stephen ; White, Amanda</creatorcontrib><description>We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the
discretization of the evolution formula rather than on its
form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2003.09.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Exact sciences and technology ; Mathematical methods in physics ; Physics ; Small-cell problem ; Stability</subject><ispartof>Journal of computational physics, 2004-03, Vol.194 (2), p.395-408</ispartof><rights>2003 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</citedby><cites>FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15622055$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Visher, John</creatorcontrib><creatorcontrib>Wandzura, Stephen</creatorcontrib><creatorcontrib>White, Amanda</creatorcontrib><title>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</title><title>Journal of computational physics</title><description>We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the
discretization of the evolution formula rather than on its
form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Small-cell problem</subject><subject>Stability</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWB8fwFsuetFdZ7KP7uJJii8QPKjgLaTJxKZsNzXZVvTTG63gzcMwzPCbx__P2BFCjoD1-Tyf62UuAIoc2hxEs8VGCC1kYoz1NhsBCMzatsVdthfjHACaqmxG7OVxUNOOzvjMvc4yHwwFblzUgQb3qQbne2594LT23eqn8pYPM-Lvak2c3lYbxPUc-WkK4xbUx9SKB2zHqi7S4W_eZ8_XV0-T2-z-4eZucnmf6VKMh6xoTCHMtLW6Ho-NTQKsQQ1aKGUUTXVjQFDR0BS1NaYqEGusNRaFFqW1xhb77GSzdxn824riIBfpfeo61ZNfRSmaEqGENoG4AXXwMQaychncQoUPiSC_PZRzmTyU3x5KaGXyMM0c_y5XUavOBtVrF_8Gq1oIqKrEXWw4SkrXjoKM2lGvybhAepDGu3-ufAFv44eR</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Visher, John</creator><creator>Wandzura, Stephen</creator><creator>White, Amanda</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</title><author>Visher, John ; Wandzura, Stephen ; White, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Small-cell problem</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Visher, John</creatorcontrib><creatorcontrib>Wandzura, Stephen</creatorcontrib><creatorcontrib>White, Amanda</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visher, John</au><au>Wandzura, Stephen</au><au>White, Amanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions</atitle><jtitle>Journal of computational physics</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>194</volume><issue>2</issue><spage>395</spage><epage>408</epage><pages>395-408</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We carry forward the approach of Alpert, Greengard, and Hagstrom to construct stable high-order explicit discretizations for the wave equation in one space and one time dimension. They presented their scheme as an integral form of the Lax–Wendroff method. Our perspective is somewhat different from theirs; our focus is on the
discretization of the evolution formula rather than on its
form (integral, differential, etc.). A key feature of our approach is the independent computation of three discretizations, one for bulk (away from boundaries) propagation, one for propagation near boundaries, and a projection operator to enforce boundary conditions. This is done in a way that is straightforward to extend to more space dimensions.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2003.09.028</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2004-03, Vol.194 (2), p.395-408 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_28410409 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computational techniques Exact sciences and technology Mathematical methods in physics Physics Small-cell problem Stability |
title | Stable, high-order discretization for evolution of the wave equation in 1 + 1 dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable,%20high-order%20discretization%20for%20evolution%20of%20the%20wave%20equation%20in%201%20+%201%20dimensions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Visher,%20John&rft.date=2004-03-01&rft.volume=194&rft.issue=2&rft.spage=395&rft.epage=408&rft.pages=395-408&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2003.09.028&rft_dat=%3Cproquest_cross%3E28410409%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-38d32db9fc677df200fd1c0c2aadaebc8d02e38eb1cfdd5311616c133c24ffdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28410409&rft_id=info:pmid/&rfr_iscdi=true |