Loading…
Morphometric analysis of white matter lesions in MR images: method and validation
The analysis of MR images is evolving from qualitative to quantitative. More and more, the question asked by clinicians is how much and where, rather than a simple statement on the presence or absence of abnormalities. The authors present a study in which the results obtained with a semiautomatic, m...
Saved in:
Published in: | IEEE transactions on medical imaging 1994-12, Vol.13 (4), p.716-724 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The analysis of MR images is evolving from qualitative to quantitative. More and more, the question asked by clinicians is how much and where, rather than a simple statement on the presence or absence of abnormalities. The authors present a study in which the results obtained with a semiautomatic, multispectral segmentation technique are quantitatively compared to manually delineated regions. The core of the semiautomatic image analysis system is a supervised artificial neural network classifier augmented with dedicated preand postprocessing algorithms, including anisotropic noise filtering and a surface-fitting method for the correction of spatial intensity variations. The study was focused on the quantitation of white matter lesions in the human brain. A total of 36 images from six brain volumes was analyzed twice by each of two operators, under supervision of a neuroradiologist. Both the intra- and interrater variability of the methods were studied in terms of the average tissue area detected per slice, the correlation coefficients between area measurements, and a measure of similarity derived from the kappa statistic. The results indicate that, compared to a manual method, the use of the semiautomatic technique not only facilitates the analysis of the images, but also has similar or lower intra- and interrater variabilities.< > |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.363096 |