Loading…

The formation of asteroid satellites in large impacts: results from numerical simulations

We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding...

Full description

Saved in:
Bibliographic Details
Published in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2004-02, Vol.167 (2), p.382-396
Main Authors: Durda, Daniel D, Bottke, William F, Enke, Brian L, Merline, William J, Asphaug, Erik, Richardson, Derek C, Leinhardt, Zoë M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3
cites cdi_FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3
container_end_page 396
container_issue 2
container_start_page 382
container_title Icarus (New York, N.Y. 1962)
container_volume 167
creator Durda, Daniel D
Bottke, William F
Enke, Brian L
Merline, William J
Asphaug, Erik
Richardson, Derek C
Leinhardt, Zoë M
description We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle–particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s −1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.
doi_str_mv 10.1016/j.icarus.2003.09.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28418060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103503002987</els_id><sourcerecordid>28418060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3</originalsourceid><addsrcrecordid>eNqFkD2P1TAQRS0EEo-Ff0DhBrqEsR3HMQUSWi0f0ko0S0FlGWcMfkrih8dB4t_jx1uJDqppzr1zdRh7LqAXIMZXxz4FX3bqJYDqwfYgzAN2EGChk-OgHrIDgLCdAKUfsydERwDQk1UH9uXuO_KYy-pryhvPkXuqWHKaOfmKy5IqEk8bX3z5hjytJx8qveYFaV8q8Vjyyrd9xdImLJzSui9_qugpexT9Qvjs_l6xz-9u7q4_dLef3n-8fnvbBWXH2skoRm2jV8YrC5O1RschjhL912EyysogwiC1npXU8wjaGD_DrLVVgw5xjuqKvbz0nkr-sSNVtyYKbbnfMO_k5DSICUb4L9goZaQxDRwuYCiZqGB0p5JWX345Ae4s3B3dRbg7C3dgXRPeYi_u-z01F7H4LST6m22bJzOduTcXDpuVnwmLo5BwCzingqG6Oad_P_oNhv2Y4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18037277</pqid></control><display><type>article</type><title>The formation of asteroid satellites in large impacts: results from numerical simulations</title><source>ScienceDirect Journals</source><creator>Durda, Daniel D ; Bottke, William F ; Enke, Brian L ; Merline, William J ; Asphaug, Erik ; Richardson, Derek C ; Leinhardt, Zoë M</creator><creatorcontrib>Durda, Daniel D ; Bottke, William F ; Enke, Brian L ; Merline, William J ; Asphaug, Erik ; Richardson, Derek C ; Leinhardt, Zoë M</creatorcontrib><description>We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle–particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s −1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2003.09.017</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Asteroids ; Asteroids (minor planets) ; Astronomy ; Collisional physics ; Earth, ocean, space ; Exact sciences and technology ; Impact processes ; Planets, their satellites and rings. Asteroids ; Satellites ; Solar system</subject><ispartof>Icarus (New York, N.Y. 1962), 2004-02, Vol.167 (2), p.382-396</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3</citedby><cites>FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15598787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Durda, Daniel D</creatorcontrib><creatorcontrib>Bottke, William F</creatorcontrib><creatorcontrib>Enke, Brian L</creatorcontrib><creatorcontrib>Merline, William J</creatorcontrib><creatorcontrib>Asphaug, Erik</creatorcontrib><creatorcontrib>Richardson, Derek C</creatorcontrib><creatorcontrib>Leinhardt, Zoë M</creatorcontrib><title>The formation of asteroid satellites in large impacts: results from numerical simulations</title><title>Icarus (New York, N.Y. 1962)</title><description>We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle–particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s −1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.</description><subject>Asteroids</subject><subject>Asteroids (minor planets)</subject><subject>Astronomy</subject><subject>Collisional physics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Impact processes</subject><subject>Planets, their satellites and rings. Asteroids</subject><subject>Satellites</subject><subject>Solar system</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkD2P1TAQRS0EEo-Ff0DhBrqEsR3HMQUSWi0f0ko0S0FlGWcMfkrih8dB4t_jx1uJDqppzr1zdRh7LqAXIMZXxz4FX3bqJYDqwfYgzAN2EGChk-OgHrIDgLCdAKUfsydERwDQk1UH9uXuO_KYy-pryhvPkXuqWHKaOfmKy5IqEk8bX3z5hjytJx8qveYFaV8q8Vjyyrd9xdImLJzSui9_qugpexT9Qvjs_l6xz-9u7q4_dLef3n-8fnvbBWXH2skoRm2jV8YrC5O1RschjhL912EyysogwiC1npXU8wjaGD_DrLVVgw5xjuqKvbz0nkr-sSNVtyYKbbnfMO_k5DSICUb4L9goZaQxDRwuYCiZqGB0p5JWX345Ae4s3B3dRbg7C3dgXRPeYi_u-z01F7H4LST6m22bJzOduTcXDpuVnwmLo5BwCzingqG6Oad_P_oNhv2Y4A</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Durda, Daniel D</creator><creator>Bottke, William F</creator><creator>Enke, Brian L</creator><creator>Merline, William J</creator><creator>Asphaug, Erik</creator><creator>Richardson, Derek C</creator><creator>Leinhardt, Zoë M</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040201</creationdate><title>The formation of asteroid satellites in large impacts: results from numerical simulations</title><author>Durda, Daniel D ; Bottke, William F ; Enke, Brian L ; Merline, William J ; Asphaug, Erik ; Richardson, Derek C ; Leinhardt, Zoë M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Asteroids</topic><topic>Asteroids (minor planets)</topic><topic>Astronomy</topic><topic>Collisional physics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Impact processes</topic><topic>Planets, their satellites and rings. Asteroids</topic><topic>Satellites</topic><topic>Solar system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durda, Daniel D</creatorcontrib><creatorcontrib>Bottke, William F</creatorcontrib><creatorcontrib>Enke, Brian L</creatorcontrib><creatorcontrib>Merline, William J</creatorcontrib><creatorcontrib>Asphaug, Erik</creatorcontrib><creatorcontrib>Richardson, Derek C</creatorcontrib><creatorcontrib>Leinhardt, Zoë M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durda, Daniel D</au><au>Bottke, William F</au><au>Enke, Brian L</au><au>Merline, William J</au><au>Asphaug, Erik</au><au>Richardson, Derek C</au><au>Leinhardt, Zoë M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The formation of asteroid satellites in large impacts: results from numerical simulations</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>167</volume><issue>2</issue><spage>382</spage><epage>396</epage><pages>382-396</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle–particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s −1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2003.09.017</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2004-02, Vol.167 (2), p.382-396
issn 0019-1035
1090-2643
language eng
recordid cdi_proquest_miscellaneous_28418060
source ScienceDirect Journals
subjects Asteroids
Asteroids (minor planets)
Astronomy
Collisional physics
Earth, ocean, space
Exact sciences and technology
Impact processes
Planets, their satellites and rings. Asteroids
Satellites
Solar system
title The formation of asteroid satellites in large impacts: results from numerical simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20formation%20of%20asteroid%20satellites%20in%20large%20impacts:%20results%20from%20numerical%20simulations&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Durda,%20Daniel%20D&rft.date=2004-02-01&rft.volume=167&rft.issue=2&rft.spage=382&rft.epage=396&rft.pages=382-396&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2003.09.017&rft_dat=%3Cproquest_cross%3E28418060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-2f1659fa37a39089975f4f62eab487392c1c4255d325d60577ad0d559345cfdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18037277&rft_id=info:pmid/&rfr_iscdi=true