Loading…
Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles
Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previ...
Saved in:
Published in: | ACS sensors 2023-08, Vol.8 (8), p.3158-3166 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83 |
---|---|
cites | cdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83 |
container_end_page | 3166 |
container_issue | 8 |
container_start_page | 3158 |
container_title | ACS sensors |
container_volume | 8 |
creator | Choi, Jun Hee Jang, Wookyoung Lim, Yong Jun Mun, Seok Joon Bong, Ki Wan |
description | Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image. |
doi_str_mv | 10.1021/acssensors.3c00857 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841881060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841881060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</originalsourceid><addsrcrecordid>eNp9kDFv2zAQRomiQR04_gMdCo1Z5B5FSqRGN3XsAC66JLNAUyebAS2qPAuI_31Y2G0yZeIN730gHmNfOcw5FPy7sUTYU4g0FxZAl-oTuy6EqnNR1fLzu3vCZkTPAMDLqig1fGEToaSuVVlds27tdnt_yu49vritx-wn4pBv0MTe9bv8hyFss8V4DAdzdDZb9MafyFHWhZitohn2zhqf_GVvQ5vQ9amNYYc---VsDIOJyfJIN-yqM55wdnmn7Ol--Xi3zje_Vw93i01uhCyOuUVTdxza2qDmhZKK11CD1lYrBVxLLbiyVrRWSl7UZQugSqlQC1FVYttqMWW3590hhj8j0rE5OLLovekxjNQUWnKtOVSQ0OKMpn8SReyaIbqDiaeGQ_M3cfOWuLkkTtK3y_64PWD7X_kXNAHzM5Dk5jmMMQWjjxZfAT__iZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841881060</pqid></control><display><type>article</type><title>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Choi, Jun Hee ; Jang, Wookyoung ; Lim, Yong Jun ; Mun, Seok Joon ; Bong, Ki Wan</creator><creatorcontrib>Choi, Jun Hee ; Jang, Wookyoung ; Lim, Yong Jun ; Mun, Seok Joon ; Bong, Ki Wan</creatorcontrib><description>Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.3c00857</identifier><identifier>PMID: 37489756</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2023-08, Vol.8 (8), p.3158-3166</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</citedby><cites>FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</cites><orcidid>0000-0001-5026-0757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37489756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Jang, Wookyoung</creatorcontrib><creatorcontrib>Lim, Yong Jun</creatorcontrib><creatorcontrib>Mun, Seok Joon</creatorcontrib><creatorcontrib>Bong, Ki Wan</creatorcontrib><title>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQRomiQR04_gMdCo1Z5B5FSqRGN3XsAC66JLNAUyebAS2qPAuI_31Y2G0yZeIN730gHmNfOcw5FPy7sUTYU4g0FxZAl-oTuy6EqnNR1fLzu3vCZkTPAMDLqig1fGEToaSuVVlds27tdnt_yu49vritx-wn4pBv0MTe9bv8hyFss8V4DAdzdDZb9MafyFHWhZitohn2zhqf_GVvQ5vQ9amNYYc---VsDIOJyfJIN-yqM55wdnmn7Ol--Xi3zje_Vw93i01uhCyOuUVTdxza2qDmhZKK11CD1lYrBVxLLbiyVrRWSl7UZQugSqlQC1FVYttqMWW3590hhj8j0rE5OLLovekxjNQUWnKtOVSQ0OKMpn8SReyaIbqDiaeGQ_M3cfOWuLkkTtK3y_64PWD7X_kXNAHzM5Dk5jmMMQWjjxZfAT__iZo</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>Choi, Jun Hee</creator><creator>Jang, Wookyoung</creator><creator>Lim, Yong Jun</creator><creator>Mun, Seok Joon</creator><creator>Bong, Ki Wan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5026-0757</orcidid></search><sort><creationdate>20230825</creationdate><title>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</title><author>Choi, Jun Hee ; Jang, Wookyoung ; Lim, Yong Jun ; Mun, Seok Joon ; Bong, Ki Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Jang, Wookyoung</creatorcontrib><creatorcontrib>Lim, Yong Jun</creatorcontrib><creatorcontrib>Mun, Seok Joon</creatorcontrib><creatorcontrib>Bong, Ki Wan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jun Hee</au><au>Jang, Wookyoung</au><au>Lim, Yong Jun</au><au>Mun, Seok Joon</au><au>Bong, Ki Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2023-08-25</date><risdate>2023</risdate><volume>8</volume><issue>8</issue><spage>3158</spage><epage>3166</epage><pages>3158-3166</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37489756</pmid><doi>10.1021/acssensors.3c00857</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5026-0757</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2023-08, Vol.8 (8), p.3158-3166 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_proquest_miscellaneous_2841881060 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Flexible%20Deep-Learning-Based%20Automatic%20Analysis%20for%20Graphically%20Encoded%20Hydrogel%20Microparticles&rft.jtitle=ACS%20sensors&rft.au=Choi,%20Jun%20Hee&rft.date=2023-08-25&rft.volume=8&rft.issue=8&rft.spage=3158&rft.epage=3166&rft.pages=3158-3166&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.3c00857&rft_dat=%3Cproquest_cross%3E2841881060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841881060&rft_id=info:pmid/37489756&rfr_iscdi=true |