Loading…

Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles

Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previ...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2023-08, Vol.8 (8), p.3158-3166
Main Authors: Choi, Jun Hee, Jang, Wookyoung, Lim, Yong Jun, Mun, Seok Joon, Bong, Ki Wan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83
cites cdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83
container_end_page 3166
container_issue 8
container_start_page 3158
container_title ACS sensors
container_volume 8
creator Choi, Jun Hee
Jang, Wookyoung
Lim, Yong Jun
Mun, Seok Joon
Bong, Ki Wan
description Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.
doi_str_mv 10.1021/acssensors.3c00857
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2841881060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841881060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</originalsourceid><addsrcrecordid>eNp9kDFv2zAQRomiQR04_gMdCo1Z5B5FSqRGN3XsAC66JLNAUyebAS2qPAuI_31Y2G0yZeIN730gHmNfOcw5FPy7sUTYU4g0FxZAl-oTuy6EqnNR1fLzu3vCZkTPAMDLqig1fGEToaSuVVlds27tdnt_yu49vritx-wn4pBv0MTe9bv8hyFss8V4DAdzdDZb9MafyFHWhZitohn2zhqf_GVvQ5vQ9amNYYc---VsDIOJyfJIN-yqM55wdnmn7Ol--Xi3zje_Vw93i01uhCyOuUVTdxza2qDmhZKK11CD1lYrBVxLLbiyVrRWSl7UZQugSqlQC1FVYttqMWW3590hhj8j0rE5OLLovekxjNQUWnKtOVSQ0OKMpn8SReyaIbqDiaeGQ_M3cfOWuLkkTtK3y_64PWD7X_kXNAHzM5Dk5jmMMQWjjxZfAT__iZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841881060</pqid></control><display><type>article</type><title>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Choi, Jun Hee ; Jang, Wookyoung ; Lim, Yong Jun ; Mun, Seok Joon ; Bong, Ki Wan</creator><creatorcontrib>Choi, Jun Hee ; Jang, Wookyoung ; Lim, Yong Jun ; Mun, Seok Joon ; Bong, Ki Wan</creatorcontrib><description>Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.3c00857</identifier><identifier>PMID: 37489756</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2023-08, Vol.8 (8), p.3158-3166</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</citedby><cites>FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</cites><orcidid>0000-0001-5026-0757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37489756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Jang, Wookyoung</creatorcontrib><creatorcontrib>Lim, Yong Jun</creatorcontrib><creatorcontrib>Mun, Seok Joon</creatorcontrib><creatorcontrib>Bong, Ki Wan</creatorcontrib><title>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQRomiQR04_gMdCo1Z5B5FSqRGN3XsAC66JLNAUyebAS2qPAuI_31Y2G0yZeIN730gHmNfOcw5FPy7sUTYU4g0FxZAl-oTuy6EqnNR1fLzu3vCZkTPAMDLqig1fGEToaSuVVlds27tdnt_yu49vritx-wn4pBv0MTe9bv8hyFss8V4DAdzdDZb9MafyFHWhZitohn2zhqf_GVvQ5vQ9amNYYc---VsDIOJyfJIN-yqM55wdnmn7Ol--Xi3zje_Vw93i01uhCyOuUVTdxza2qDmhZKK11CD1lYrBVxLLbiyVrRWSl7UZQugSqlQC1FVYttqMWW3590hhj8j0rE5OLLovekxjNQUWnKtOVSQ0OKMpn8SReyaIbqDiaeGQ_M3cfOWuLkkTtK3y_64PWD7X_kXNAHzM5Dk5jmMMQWjjxZfAT__iZo</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>Choi, Jun Hee</creator><creator>Jang, Wookyoung</creator><creator>Lim, Yong Jun</creator><creator>Mun, Seok Joon</creator><creator>Bong, Ki Wan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5026-0757</orcidid></search><sort><creationdate>20230825</creationdate><title>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</title><author>Choi, Jun Hee ; Jang, Wookyoung ; Lim, Yong Jun ; Mun, Seok Joon ; Bong, Ki Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jun Hee</creatorcontrib><creatorcontrib>Jang, Wookyoung</creatorcontrib><creatorcontrib>Lim, Yong Jun</creatorcontrib><creatorcontrib>Mun, Seok Joon</creatorcontrib><creatorcontrib>Bong, Ki Wan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jun Hee</au><au>Jang, Wookyoung</au><au>Lim, Yong Jun</au><au>Mun, Seok Joon</au><au>Bong, Ki Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2023-08-25</date><risdate>2023</risdate><volume>8</volume><issue>8</issue><spage>3158</spage><epage>3166</epage><pages>3158-3166</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37489756</pmid><doi>10.1021/acssensors.3c00857</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5026-0757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2023-08, Vol.8 (8), p.3158-3166
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2841881060
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Flexible%20Deep-Learning-Based%20Automatic%20Analysis%20for%20Graphically%20Encoded%20Hydrogel%20Microparticles&rft.jtitle=ACS%20sensors&rft.au=Choi,%20Jun%20Hee&rft.date=2023-08-25&rft.volume=8&rft.issue=8&rft.spage=3158&rft.epage=3166&rft.pages=3158-3166&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.3c00857&rft_dat=%3Cproquest_cross%3E2841881060%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-cea9f10d9ae8127471909088c87701848317cc3dc441295d007547e833663bd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2841881060&rft_id=info:pmid/37489756&rfr_iscdi=true