Loading…
Maximum-likelihood synchronization of a single user for code-division multiple-access communication systems
Code-division multiple access (CDMA) has emerged as an access protocol well-suited for voice and data transmission. One significant limitation of the conventional CDMA system is the near-far problem where strong signals interfere with the detection of a weak signal. Multiuser detectors assume knowle...
Saved in:
Published in: | IEEE transactions on communications 1998-03, Vol.46 (3), p.392-399 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Code-division multiple access (CDMA) has emerged as an access protocol well-suited for voice and data transmission. One significant limitation of the conventional CDMA system is the near-far problem where strong signals interfere with the detection of a weak signal. Multiuser detectors assume knowledge of all of the modulation waveforms and channel parameters, and exploit this information to eliminate multiple-access interference (MAI) and to achieve near-far resistance. A major problem in practical application of multiuser detection is the estimation of the signal and channel parameters in a near-far limited system. We consider maximum-likelihood estimation of users delay, amplitude, and phase in a CDMA communication system. We present an approach for decomposing this multiuser estimation problem into a series of single-user problems. In this method the interfering users are treated as colored non-Gaussian noise. The observation vectors are preprocessed to be able to apply a Gaussian model for the MAI. The maximum-likelihood estimate (MLE) of each user's parameters based on the processed observation vectors becomes tractable. The estimator includes a whitening filter derived from the sample covariance matrix which is used to suppress the MAI, thus yielding a near-far resistant estimator. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.662645 |