Loading…

Facile fabrication and application of highly efficient reduced graphene oxide (rGO)-wrapped 3D foam for the removal of organic and inorganic water pollutants

The pace of water contamination is increasing daily due to expanding industrialisation. Finding a feasible solution for effectively remediating various organic and inorganic pollutants from large water bodies remains challenging. However, a nano-engineered advanced hybrid material could provide a pr...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2023-08, Vol.30 (40), p.93054-93069
Main Authors: Sahu, Prateekshya Suman, Verma, Ravi Prakash, Tewari, Chetna, Sahoo, Nanda Gopal, Saha, Biswajit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pace of water contamination is increasing daily due to expanding industrialisation. Finding a feasible solution for effectively remediating various organic and inorganic pollutants from large water bodies remains challenging. However, a nano-engineered advanced hybrid material could provide a practical solution for the efficient removal of such pollutants. This work has reported the development of a highly efficient and reusable absorbent comprising a porous polyurethane (PU) and reduced graphene oxide (rGO) nanosheets (rGOPU) for the removal of different organic oils (industrial oil, engine oil and mustard oil), dyes (MB, MO, RB, EY and MV) and heavy metals (Pb(II), Cr(VI), Cd(II), Co(II) and As(V)). The structure, morphology and properties of the rGOPU hybrid absorbents were analysed by using Raman spectroscopy, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunner-Emitte-Teller (BET) analysis. The rGOPU possessed both superhydrophobicity and superoleophilicity with water and oil contact angles of about 164° and 0°, respectively. The prepared rGOPU has demonstrated an excellent oil-water separation ability (up to 99%), heavy metals removal efficiency (more than 75%), toxic dye adsorption (more than 55%), excellent recyclability (> 500 times for oils), extraordinary mechanical stability (90% compressible for > 1000 cycles) and high recoverability. This work presents the first demonstration of rGOPU’s multifunctional absorbent capacity in large-scale wastewater treatment for effectively removing a wide variety of organic and inorganic contaminants. Graphical Abstract
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-28976-x