Loading…
The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number
We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for tim...
Saved in:
Published in: | Journal of fluid mechanics 2004-04, Vol.505, p.235-248 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3 |
---|---|
cites | |
container_end_page | 248 |
container_issue | |
container_start_page | 235 |
container_title | Journal of fluid mechanics |
container_volume | 505 |
creator | LESHANSKY, A. M. LAVRENTEVA, O. M. NIR, A. |
description | We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field. |
doi_str_mv | 10.1017/S0022112004008407 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28436172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112004008407</cupid><sourcerecordid>1399085561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3</originalsourceid><addsrcrecordid>eNp1kF1rFDEUhoNYcG39Ad4FQe9GTz4m2VyWtR9CQdpupXchySRr6sykJjPY_vtm2aUFxatz4HnO4eVF6D2BzwSI_HINQCkhFIADLDnIV2hBuFCNFLx9jRZb3Gz5G_S2lDsAwkDJBbpd__S496aL4wb7ELybcAo49HPscBx9nqLBacRT1YY0xbpWnOOmYpu66As2E-7TH3zlH8fUdwWP82B9PkIHwfTFv9vPQ3RzerJenTcX38--rY4vGsdbMTWWgWRBGekYJ5ZaQYCzYJ3idhmc87IDFkgbmLdWtpJzVReihFAdJdR17BB92v29z-n37Mukh1ic73sz-jQXTZecCSJpFT_8Jd6lOY81m6YElkq2AqpEdpLLqZTsg77PcTD5URPQ26L1P0XXm4_7x6Y404dsRhfLy2ErFRGSVa_ZebFM_uGZm_xLVyxbLc4u9Y8V3Er1da1V9dk-ixlsjt3GvyT-f5onAaCaNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210897560</pqid></control><display><type>article</type><title>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</title><source>Cambridge Journals Online</source><creator>LESHANSKY, A. M. ; LAVRENTEVA, O. M. ; NIR, A.</creator><creatorcontrib>LESHANSKY, A. M. ; LAVRENTEVA, O. M. ; NIR, A.</creatorcontrib><description>We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112004008407</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Laminar flows in cavities ; Laminar suspensions ; Physics ; Reynolds number ; Uniform flow</subject><ispartof>Journal of fluid mechanics, 2004-04, Vol.505, p.235-248</ispartof><rights>2004 Cambridge University Press</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112004008407/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15791673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LESHANSKY, A. M.</creatorcontrib><creatorcontrib>LAVRENTEVA, O. M.</creatorcontrib><creatorcontrib>NIR, A.</creatorcontrib><title>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Laminar suspensions</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Uniform flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFDEUhoNYcG39Ad4FQe9GTz4m2VyWtR9CQdpupXchySRr6sykJjPY_vtm2aUFxatz4HnO4eVF6D2BzwSI_HINQCkhFIADLDnIV2hBuFCNFLx9jRZb3Gz5G_S2lDsAwkDJBbpd__S496aL4wb7ELybcAo49HPscBx9nqLBacRT1YY0xbpWnOOmYpu66As2E-7TH3zlH8fUdwWP82B9PkIHwfTFv9vPQ3RzerJenTcX38--rY4vGsdbMTWWgWRBGekYJ5ZaQYCzYJ3idhmc87IDFkgbmLdWtpJzVReihFAdJdR17BB92v29z-n37Mukh1ic73sz-jQXTZecCSJpFT_8Jd6lOY81m6YElkq2AqpEdpLLqZTsg77PcTD5URPQ26L1P0XXm4_7x6Y404dsRhfLy2ErFRGSVa_ZebFM_uGZm_xLVyxbLc4u9Y8V3Er1da1V9dk-ixlsjt3GvyT-f5onAaCaNw</recordid><startdate>20040425</startdate><enddate>20040425</enddate><creator>LESHANSKY, A. M.</creator><creator>LAVRENTEVA, O. M.</creator><creator>NIR, A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20040425</creationdate><title>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</title><author>LESHANSKY, A. M. ; LAVRENTEVA, O. M. ; NIR, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Laminar suspensions</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LESHANSKY, A. M.</creatorcontrib><creatorcontrib>LAVRENTEVA, O. M.</creatorcontrib><creatorcontrib>NIR, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LESHANSKY, A. M.</au><au>LAVRENTEVA, O. M.</au><au>NIR, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2004-04-25</date><risdate>2004</risdate><volume>505</volume><spage>235</spage><epage>248</epage><pages>235-248</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112004008407</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2004-04, Vol.505, p.235-248 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_28436172 |
source | Cambridge Journals Online |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Laminar flows Laminar flows in cavities Laminar suspensions Physics Reynolds number Uniform flow |
title | The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20leading%20effect%20of%20fluid%20inertia%20on%20the%20motion%20of%20rigid%20bodies%20at%20low%20Reynolds%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=LESHANSKY,%20A.%20M.&rft.date=2004-04-25&rft.volume=505&rft.spage=235&rft.epage=248&rft.pages=235-248&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112004008407&rft_dat=%3Cproquest_cross%3E1399085561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210897560&rft_id=info:pmid/&rft_cupid=10_1017_S0022112004008407&rfr_iscdi=true |