Loading…

The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number

We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for tim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2004-04, Vol.505, p.235-248
Main Authors: LESHANSKY, A. M., LAVRENTEVA, O. M., NIR, A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3
cites
container_end_page 248
container_issue
container_start_page 235
container_title Journal of fluid mechanics
container_volume 505
creator LESHANSKY, A. M.
LAVRENTEVA, O. M.
NIR, A.
description We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.
doi_str_mv 10.1017/S0022112004008407
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28436172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112004008407</cupid><sourcerecordid>1399085561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3</originalsourceid><addsrcrecordid>eNp1kF1rFDEUhoNYcG39Ad4FQe9GTz4m2VyWtR9CQdpupXchySRr6sykJjPY_vtm2aUFxatz4HnO4eVF6D2BzwSI_HINQCkhFIADLDnIV2hBuFCNFLx9jRZb3Gz5G_S2lDsAwkDJBbpd__S496aL4wb7ELybcAo49HPscBx9nqLBacRT1YY0xbpWnOOmYpu66As2E-7TH3zlH8fUdwWP82B9PkIHwfTFv9vPQ3RzerJenTcX38--rY4vGsdbMTWWgWRBGekYJ5ZaQYCzYJ3idhmc87IDFkgbmLdWtpJzVReihFAdJdR17BB92v29z-n37Mukh1ic73sz-jQXTZecCSJpFT_8Jd6lOY81m6YElkq2AqpEdpLLqZTsg77PcTD5URPQ26L1P0XXm4_7x6Y404dsRhfLy2ErFRGSVa_ZebFM_uGZm_xLVyxbLc4u9Y8V3Er1da1V9dk-ixlsjt3GvyT-f5onAaCaNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210897560</pqid></control><display><type>article</type><title>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</title><source>Cambridge Journals Online</source><creator>LESHANSKY, A. M. ; LAVRENTEVA, O. M. ; NIR, A.</creator><creatorcontrib>LESHANSKY, A. M. ; LAVRENTEVA, O. M. ; NIR, A.</creatorcontrib><description>We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112004008407</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Laminar flows in cavities ; Laminar suspensions ; Physics ; Reynolds number ; Uniform flow</subject><ispartof>Journal of fluid mechanics, 2004-04, Vol.505, p.235-248</ispartof><rights>2004 Cambridge University Press</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112004008407/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15791673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LESHANSKY, A. M.</creatorcontrib><creatorcontrib>LAVRENTEVA, O. M.</creatorcontrib><creatorcontrib>NIR, A.</creatorcontrib><title>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Laminar suspensions</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Uniform flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFDEUhoNYcG39Ad4FQe9GTz4m2VyWtR9CQdpupXchySRr6sykJjPY_vtm2aUFxatz4HnO4eVF6D2BzwSI_HINQCkhFIADLDnIV2hBuFCNFLx9jRZb3Gz5G_S2lDsAwkDJBbpd__S496aL4wb7ELybcAo49HPscBx9nqLBacRT1YY0xbpWnOOmYpu66As2E-7TH3zlH8fUdwWP82B9PkIHwfTFv9vPQ3RzerJenTcX38--rY4vGsdbMTWWgWRBGekYJ5ZaQYCzYJ3idhmc87IDFkgbmLdWtpJzVReihFAdJdR17BB92v29z-n37Mukh1ic73sz-jQXTZecCSJpFT_8Jd6lOY81m6YElkq2AqpEdpLLqZTsg77PcTD5URPQ26L1P0XXm4_7x6Y404dsRhfLy2ErFRGSVa_ZebFM_uGZm_xLVyxbLc4u9Y8V3Er1da1V9dk-ixlsjt3GvyT-f5onAaCaNw</recordid><startdate>20040425</startdate><enddate>20040425</enddate><creator>LESHANSKY, A. M.</creator><creator>LAVRENTEVA, O. M.</creator><creator>NIR, A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20040425</creationdate><title>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</title><author>LESHANSKY, A. M. ; LAVRENTEVA, O. M. ; NIR, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Laminar suspensions</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LESHANSKY, A. M.</creatorcontrib><creatorcontrib>LAVRENTEVA, O. M.</creatorcontrib><creatorcontrib>NIR, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LESHANSKY, A. M.</au><au>LAVRENTEVA, O. M.</au><au>NIR, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2004-04-25</date><risdate>2004</risdate><volume>505</volume><spage>235</spage><epage>248</epage><pages>235-248</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We investigate the influence of fluid inertia on the motion of a finite assemblage of solid spherical particles in slowly changing uniform flow at small Reynolds number, $Re$, and moderate Strouhal number, $\hbox{\it Sl}$. We show that the first effect of fluid inertia on particle velocities for times much larger than the viscous time scales as $\sqrt{\hbox{\it Sl\,Re}}$ given that the Stokeslet associated with the disturbance flow field changes with time. Our theory predicts that the correction to the particle motion from that predicted by the zero-$Re$ theory has the form of a Basset integral. As a particular example, we calculate the Basset integral for the case of two unequal particles approaching (receding) with a constant velocity along the line of their centres. On the other hand, when the Stokeslet strength is independent of time, the first effect of fluid inertia reduces to a higher order of magnitude and scales as $Re$. This condition is fulfilled, for example, in the classical problem of sedimentation of particles in a constant gravity field.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112004008407</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2004-04, Vol.505, p.235-248
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_28436172
source Cambridge Journals Online
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Laminar flows
Laminar flows in cavities
Laminar suspensions
Physics
Reynolds number
Uniform flow
title The leading effect of fluid inertia on the motion of rigid bodies at low Reynolds number
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20leading%20effect%20of%20fluid%20inertia%20on%20the%20motion%20of%20rigid%20bodies%20at%20low%20Reynolds%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=LESHANSKY,%20A.%20M.&rft.date=2004-04-25&rft.volume=505&rft.spage=235&rft.epage=248&rft.pages=235-248&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112004008407&rft_dat=%3Cproquest_cross%3E1399085561%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-b3073f9a7c341b2b61043fbc94b8fcce7d03f15f3ebb757449ebb19669d212cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210897560&rft_id=info:pmid/&rft_cupid=10_1017_S0022112004008407&rfr_iscdi=true