Loading…

The cathode–electrolyte interface in the Li-ion battery

The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomen...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2004-11, Vol.50 (2), p.397-403
Main Authors: Edström, K., Gustafsson, T., Thomas, J.O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283
cites cdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283
container_end_page 403
container_issue 2
container_start_page 397
container_title Electrochimica acta
container_volume 50
creator Edström, K.
Gustafsson, T.
Thomas, J.O.
description The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn 2O 4, LiCoO 2/LiNi 0.8Co 0.2O 2, and carbon-coated LiFePO 4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO 4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.
doi_str_mv 10.1016/j.electacta.2004.03.049
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28439749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468604006486</els_id><sourcerecordid>28439749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6g37c7uyJL1WIbQFwS6yV4oI5koOHYqOYXs-g_9w35JnQftsjAwA3PmXuYSckuhoEDFw6rwjcfeDlWUALwAVgDXZ2RElWQ5U5U-JyMAynIulLgkVymtAEAKCSOi50ufoe2XnfPfn18Hqdg1u95noe19rC3up6wfsFnIQ9dmC9sPi901uahtk_zNqY_J_OlxPn3JZ2_Pr9PJLEfOoc91ZUtROlc5rTwC1pJVyi4UDh0ZdQK0LCWXFaVoHVYOpLI1x4oJjaViY3J_lN3E7n3rU2_WIaFvGtv6bptMqTjTkusBlEcQY5dS9LXZxLC2cWcomH1SZmV-kzL7pAwwA4fLu5OFTWibOtoWQ_o7F2WlaUkHbnLk_PDuR_DRJAy-Re9CHHSN68K_Xj_ohIM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28439749</pqid></control><display><type>article</type><title>The cathode–electrolyte interface in the Li-ion battery</title><source>ScienceDirect Freedom Collection</source><creator>Edström, K. ; Gustafsson, T. ; Thomas, J.O.</creator><creatorcontrib>Edström, K. ; Gustafsson, T. ; Thomas, J.O.</creatorcontrib><description>The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn 2O 4, LiCoO 2/LiNi 0.8Co 0.2O 2, and carbon-coated LiFePO 4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO 4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2004.03.049</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cathode–electrolyte interface ; Chemistry ; Corrosion ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Lithium-ion battery ; Metals. Metallurgy ; PES ; XPS</subject><ispartof>Electrochimica acta, 2004-11, Vol.50 (2), p.397-403</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</citedby><cites>FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16259121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edström, K.</creatorcontrib><creatorcontrib>Gustafsson, T.</creatorcontrib><creatorcontrib>Thomas, J.O.</creatorcontrib><title>The cathode–electrolyte interface in the Li-ion battery</title><title>Electrochimica acta</title><description>The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn 2O 4, LiCoO 2/LiNi 0.8Co 0.2O 2, and carbon-coated LiFePO 4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO 4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.</description><subject>Applied sciences</subject><subject>Cathode–electrolyte interface</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Lithium-ion battery</subject><subject>Metals. Metallurgy</subject><subject>PES</subject><subject>XPS</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6g37c7uyJL1WIbQFwS6yV4oI5koOHYqOYXs-g_9w35JnQftsjAwA3PmXuYSckuhoEDFw6rwjcfeDlWUALwAVgDXZ2RElWQ5U5U-JyMAynIulLgkVymtAEAKCSOi50ufoe2XnfPfn18Hqdg1u95noe19rC3up6wfsFnIQ9dmC9sPi901uahtk_zNqY_J_OlxPn3JZ2_Pr9PJLEfOoc91ZUtROlc5rTwC1pJVyi4UDh0ZdQK0LCWXFaVoHVYOpLI1x4oJjaViY3J_lN3E7n3rU2_WIaFvGtv6bptMqTjTkusBlEcQY5dS9LXZxLC2cWcomH1SZmV-kzL7pAwwA4fLu5OFTWibOtoWQ_o7F2WlaUkHbnLk_PDuR_DRJAy-Re9CHHSN68K_Xj_ohIM8</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Edström, K.</creator><creator>Gustafsson, T.</creator><creator>Thomas, J.O.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20041130</creationdate><title>The cathode–electrolyte interface in the Li-ion battery</title><author>Edström, K. ; Gustafsson, T. ; Thomas, J.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cathode–electrolyte interface</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Lithium-ion battery</topic><topic>Metals. Metallurgy</topic><topic>PES</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edström, K.</creatorcontrib><creatorcontrib>Gustafsson, T.</creatorcontrib><creatorcontrib>Thomas, J.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edström, K.</au><au>Gustafsson, T.</au><au>Thomas, J.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cathode–electrolyte interface in the Li-ion battery</atitle><jtitle>Electrochimica acta</jtitle><date>2004-11-30</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>397</spage><epage>403</epage><pages>397-403</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn 2O 4, LiCoO 2/LiNi 0.8Co 0.2O 2, and carbon-coated LiFePO 4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO 4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2004.03.049</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2004-11, Vol.50 (2), p.397-403
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_28439749
source ScienceDirect Freedom Collection
subjects Applied sciences
Cathode–electrolyte interface
Chemistry
Corrosion
Corrosion mechanisms
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemistry
Exact sciences and technology
General and physical chemistry
Lithium-ion battery
Metals. Metallurgy
PES
XPS
title The cathode–electrolyte interface in the Li-ion battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cathode%E2%80%93electrolyte%20interface%20in%20the%20Li-ion%20battery&rft.jtitle=Electrochimica%20acta&rft.au=Edstr%C3%B6m,%20K.&rft.date=2004-11-30&rft.volume=50&rft.issue=2&rft.spage=397&rft.epage=403&rft.pages=397-403&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2004.03.049&rft_dat=%3Cproquest_cross%3E28439749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28439749&rft_id=info:pmid/&rfr_iscdi=true