Loading…
The cathode–electrolyte interface in the Li-ion battery
The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomen...
Saved in:
Published in: | Electrochimica acta 2004-11, Vol.50 (2), p.397-403 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283 |
---|---|
cites | cdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283 |
container_end_page | 403 |
container_issue | 2 |
container_start_page | 397 |
container_title | Electrochimica acta |
container_volume | 50 |
creator | Edström, K. Gustafsson, T. Thomas, J.O. |
description | The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn
2O
4, LiCoO
2/LiNi
0.8Co
0.2O
2, and carbon-coated LiFePO
4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO
4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite. |
doi_str_mv | 10.1016/j.electacta.2004.03.049 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28439749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468604006486</els_id><sourcerecordid>28439749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6g37c7uyJL1WIbQFwS6yV4oI5koOHYqOYXs-g_9w35JnQftsjAwA3PmXuYSckuhoEDFw6rwjcfeDlWUALwAVgDXZ2RElWQ5U5U-JyMAynIulLgkVymtAEAKCSOi50ufoe2XnfPfn18Hqdg1u95noe19rC3up6wfsFnIQ9dmC9sPi901uahtk_zNqY_J_OlxPn3JZ2_Pr9PJLEfOoc91ZUtROlc5rTwC1pJVyi4UDh0ZdQK0LCWXFaVoHVYOpLI1x4oJjaViY3J_lN3E7n3rU2_WIaFvGtv6bptMqTjTkusBlEcQY5dS9LXZxLC2cWcomH1SZmV-kzL7pAwwA4fLu5OFTWibOtoWQ_o7F2WlaUkHbnLk_PDuR_DRJAy-Re9CHHSN68K_Xj_ohIM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28439749</pqid></control><display><type>article</type><title>The cathode–electrolyte interface in the Li-ion battery</title><source>ScienceDirect Freedom Collection</source><creator>Edström, K. ; Gustafsson, T. ; Thomas, J.O.</creator><creatorcontrib>Edström, K. ; Gustafsson, T. ; Thomas, J.O.</creatorcontrib><description>The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn
2O
4, LiCoO
2/LiNi
0.8Co
0.2O
2, and carbon-coated LiFePO
4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO
4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2004.03.049</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cathode–electrolyte interface ; Chemistry ; Corrosion ; Corrosion mechanisms ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Lithium-ion battery ; Metals. Metallurgy ; PES ; XPS</subject><ispartof>Electrochimica acta, 2004-11, Vol.50 (2), p.397-403</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</citedby><cites>FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16259121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Edström, K.</creatorcontrib><creatorcontrib>Gustafsson, T.</creatorcontrib><creatorcontrib>Thomas, J.O.</creatorcontrib><title>The cathode–electrolyte interface in the Li-ion battery</title><title>Electrochimica acta</title><description>The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn
2O
4, LiCoO
2/LiNi
0.8Co
0.2O
2, and carbon-coated LiFePO
4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO
4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.</description><subject>Applied sciences</subject><subject>Cathode–electrolyte interface</subject><subject>Chemistry</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Lithium-ion battery</subject><subject>Metals. Metallurgy</subject><subject>PES</subject><subject>XPS</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6g37c7uyJL1WIbQFwS6yV4oI5koOHYqOYXs-g_9w35JnQftsjAwA3PmXuYSckuhoEDFw6rwjcfeDlWUALwAVgDXZ2RElWQ5U5U-JyMAynIulLgkVymtAEAKCSOi50ufoe2XnfPfn18Hqdg1u95noe19rC3up6wfsFnIQ9dmC9sPi901uahtk_zNqY_J_OlxPn3JZ2_Pr9PJLEfOoc91ZUtROlc5rTwC1pJVyi4UDh0ZdQK0LCWXFaVoHVYOpLI1x4oJjaViY3J_lN3E7n3rU2_WIaFvGtv6bptMqTjTkusBlEcQY5dS9LXZxLC2cWcomH1SZmV-kzL7pAwwA4fLu5OFTWibOtoWQ_o7F2WlaUkHbnLk_PDuR_DRJAy-Re9CHHSN68K_Xj_ohIM8</recordid><startdate>20041130</startdate><enddate>20041130</enddate><creator>Edström, K.</creator><creator>Gustafsson, T.</creator><creator>Thomas, J.O.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20041130</creationdate><title>The cathode–electrolyte interface in the Li-ion battery</title><author>Edström, K. ; Gustafsson, T. ; Thomas, J.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cathode–electrolyte interface</topic><topic>Chemistry</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Lithium-ion battery</topic><topic>Metals. Metallurgy</topic><topic>PES</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edström, K.</creatorcontrib><creatorcontrib>Gustafsson, T.</creatorcontrib><creatorcontrib>Thomas, J.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edström, K.</au><au>Gustafsson, T.</au><au>Thomas, J.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cathode–electrolyte interface in the Li-ion battery</atitle><jtitle>Electrochimica acta</jtitle><date>2004-11-30</date><risdate>2004</risdate><volume>50</volume><issue>2</issue><spage>397</spage><epage>403</epage><pages>397-403</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>The same experimental techniques as used earlier to characterize the composition and properties of the so-called solid electrolyte interphase (SEI) layer formed at the graphite-anode–electrolyte interface of a Li-ion battery are used here to acquire some degree of understanding of interface phenomena occurring on the cathode side of the cell, even though the validity of the SEI-layer concept is still somewhat tenuous in this “cathode” context. We here probe cathode-related SEI phenomena for the three cases: LiMn
2O
4, LiCoO
2/LiNi
0.8Co
0.2O
2, and carbon-coated LiFePO
4. The various layer types formed have been analyzed systematically for different salts, solvents, cycling modes, storage times, temperatures, etc., using photoelectron spectroscopy (PES). Depth-profiling of the layers formed was achieved using Al Kα radiation in conjunction with Ar-ion sputtering; non-destructive depth-profiling was made possible using synchrotron radiation, and applied to the important case of carbon-coated LiFePO
4. A number of trends have emerged from our studies, and some general models are proposed to reflect features characteristic of the various systems studied. Our results are related to the more familiar SEI-layer formed on graphite.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2004.03.049</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2004-11, Vol.50 (2), p.397-403 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_28439749 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Cathode–electrolyte interface Chemistry Corrosion Corrosion mechanisms Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemistry Exact sciences and technology General and physical chemistry Lithium-ion battery Metals. Metallurgy PES XPS |
title | The cathode–electrolyte interface in the Li-ion battery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cathode%E2%80%93electrolyte%20interface%20in%20the%20Li-ion%20battery&rft.jtitle=Electrochimica%20acta&rft.au=Edstr%C3%B6m,%20K.&rft.date=2004-11-30&rft.volume=50&rft.issue=2&rft.spage=397&rft.epage=403&rft.pages=397-403&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2004.03.049&rft_dat=%3Cproquest_cross%3E28439749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-95a262dd5d98ec0cf7358ab8c735c31d60972747511cadc5d078af4c5369c283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28439749&rft_id=info:pmid/&rfr_iscdi=true |