Loading…

Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice

Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, Octave/ Matlab tm ). Usually, numerical solutions ( traces or trajector...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science 2004-09, Vol.325 (1), p.45-67
Main Authors: Antoniotti, M., Piazza, C., Policriti, A., Simeoni, M., Mishra, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303
cites cdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303
container_end_page 67
container_issue 1
container_start_page 45
container_title Theoretical computer science
container_volume 325
creator Antoniotti, M.
Piazza, C.
Policriti, A.
Simeoni, M.
Mishra, B.
description Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, Octave/ Matlab tm ). Usually, numerical solutions ( traces or trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and Simpathica) and here we continue our investigation more deeply. We propose the use of hybrid automata and we discuss the use of the notions of bisimulation and collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.
doi_str_mv 10.1016/j.tcs.2004.03.064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28440209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397504002191</els_id><sourcerecordid>28440209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpods0P6A3X5qb3dGHrVVyCiFJC4Fe0rPQjsZZLbblSN7S_ffRZgO5VZcBzfO-Eg9j3zg0HHj3Y9csmBsBoBqQDXTqA1vxtTa1EEZ9ZCuQoGppdPuZfcl5B-W0ulsx_-jGMD1Vy5YqjOM80L-wHKrYV5sQcUtjQDdUY_Q05AKluH_allUO435wS4hT5SZfksPg5lyKLo9NMR1er-fkcAlIX9mn3g2Zzt_mGftzd_t487N--H3_6-b6oUZpzFIL124AUWrjUJFWndCgOHnO11KgMOCMdKLlSqFG3bWkeN933m-kR3IS5Bm7OPXOKT7vKS92DBmp_G2iuM9WrJUCAaaA_ARiijkn6u2cwujSwXKwR592Z4tPe_RpQdris2S-v5W7XJz0yU0Y8nuw46rV7ZG7OnHFGP0NlGzGQBOSD4lwsT6G_7zyAsWWjFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28440209</pqid></control><display><type>article</type><title>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</title><source>ScienceDirect Freedom Collection</source><creator>Antoniotti, M. ; Piazza, C. ; Policriti, A. ; Simeoni, M. ; Mishra, B.</creator><creatorcontrib>Antoniotti, M. ; Piazza, C. ; Policriti, A. ; Simeoni, M. ; Mishra, B.</creatorcontrib><description>Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, Octave/ Matlab tm ). Usually, numerical solutions ( traces or trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and Simpathica) and here we continue our investigation more deeply. We propose the use of hybrid automata and we discuss the use of the notions of bisimulation and collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2004.03.064</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Automata. Abstract machines. Turing machines ; Biochemical models ; Bisimulation ; Collapsing ; Computer science; control theory; systems ; Exact sciences and technology ; General logic ; Hybrid automata ; Logic and foundations ; Mathematical analysis ; Mathematical logic, foundations, set theory ; Mathematics ; Ordinary differential equations ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2004-09, Vol.325 (1), p.45-67</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</citedby><cites>FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16145754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Antoniotti, M.</creatorcontrib><creatorcontrib>Piazza, C.</creatorcontrib><creatorcontrib>Policriti, A.</creatorcontrib><creatorcontrib>Simeoni, M.</creatorcontrib><creatorcontrib>Mishra, B.</creatorcontrib><title>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</title><title>Theoretical computer science</title><description>Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, Octave/ Matlab tm ). Usually, numerical solutions ( traces or trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and Simpathica) and here we continue our investigation more deeply. We propose the use of hybrid automata and we discuss the use of the notions of bisimulation and collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Biochemical models</subject><subject>Bisimulation</subject><subject>Collapsing</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>General logic</subject><subject>Hybrid automata</subject><subject>Logic and foundations</subject><subject>Mathematical analysis</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpods0P6A3X5qb3dGHrVVyCiFJC4Fe0rPQjsZZLbblSN7S_ffRZgO5VZcBzfO-Eg9j3zg0HHj3Y9csmBsBoBqQDXTqA1vxtTa1EEZ9ZCuQoGppdPuZfcl5B-W0ulsx_-jGMD1Vy5YqjOM80L-wHKrYV5sQcUtjQDdUY_Q05AKluH_allUO435wS4hT5SZfksPg5lyKLo9NMR1er-fkcAlIX9mn3g2Zzt_mGftzd_t487N--H3_6-b6oUZpzFIL124AUWrjUJFWndCgOHnO11KgMOCMdKLlSqFG3bWkeN933m-kR3IS5Bm7OPXOKT7vKS92DBmp_G2iuM9WrJUCAaaA_ARiijkn6u2cwujSwXKwR592Z4tPe_RpQdris2S-v5W7XJz0yU0Y8nuw46rV7ZG7OnHFGP0NlGzGQBOSD4lwsT6G_7zyAsWWjFk</recordid><startdate>20040928</startdate><enddate>20040928</enddate><creator>Antoniotti, M.</creator><creator>Piazza, C.</creator><creator>Policriti, A.</creator><creator>Simeoni, M.</creator><creator>Mishra, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040928</creationdate><title>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</title><author>Antoniotti, M. ; Piazza, C. ; Policriti, A. ; Simeoni, M. ; Mishra, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Biochemical models</topic><topic>Bisimulation</topic><topic>Collapsing</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>General logic</topic><topic>Hybrid automata</topic><topic>Logic and foundations</topic><topic>Mathematical analysis</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antoniotti, M.</creatorcontrib><creatorcontrib>Piazza, C.</creatorcontrib><creatorcontrib>Policriti, A.</creatorcontrib><creatorcontrib>Simeoni, M.</creatorcontrib><creatorcontrib>Mishra, B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoniotti, M.</au><au>Piazza, C.</au><au>Policriti, A.</au><au>Simeoni, M.</au><au>Mishra, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</atitle><jtitle>Theoretical computer science</jtitle><date>2004-09-28</date><risdate>2004</risdate><volume>325</volume><issue>1</issue><spage>45</spage><epage>67</epage><pages>45-67</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, Octave/ Matlab tm ). Usually, numerical solutions ( traces or trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and Simpathica) and here we continue our investigation more deeply. We propose the use of hybrid automata and we discuss the use of the notions of bisimulation and collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2004.03.064</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2004-09, Vol.325 (1), p.45-67
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_28440209
source ScienceDirect Freedom Collection
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Automata. Abstract machines. Turing machines
Biochemical models
Bisimulation
Collapsing
Computer science
control theory
systems
Exact sciences and technology
General logic
Hybrid automata
Logic and foundations
Mathematical analysis
Mathematical logic, foundations, set theory
Mathematics
Ordinary differential equations
Sciences and techniques of general use
Theoretical computing
title Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taming%20the%20complexity%20of%20biochemical%20models%20through%20bisimulation%20and%20collapsing:%20theory%20and%20practice&rft.jtitle=Theoretical%20computer%20science&rft.au=Antoniotti,%20M.&rft.date=2004-09-28&rft.volume=325&rft.issue=1&rft.spage=45&rft.epage=67&rft.pages=45-67&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2004.03.064&rft_dat=%3Cproquest_cross%3E28440209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28440209&rft_id=info:pmid/&rfr_iscdi=true