Loading…
Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice
Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g., PLAS, Octave/ Matlab tm ). Usually, numerical solutions ( traces or trajector...
Saved in:
Published in: | Theoretical computer science 2004-09, Vol.325 (1), p.45-67 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303 |
container_end_page | 67 |
container_issue | 1 |
container_start_page | 45 |
container_title | Theoretical computer science |
container_volume | 325 |
creator | Antoniotti, M. Piazza, C. Policriti, A. Simeoni, M. Mishra, B. |
description | Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g.,
PLAS,
Octave/
Matlab
tm
). Usually, numerical solutions (
traces or
trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and
Simpathica) and here we continue our investigation more deeply.
We propose the use of
hybrid automata and we discuss the use of the notions of
bisimulation and
collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the
projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation. |
doi_str_mv | 10.1016/j.tcs.2004.03.064 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28440209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397504002191</els_id><sourcerecordid>28440209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpods0P6A3X5qb3dGHrVVyCiFJC4Fe0rPQjsZZLbblSN7S_ffRZgO5VZcBzfO-Eg9j3zg0HHj3Y9csmBsBoBqQDXTqA1vxtTa1EEZ9ZCuQoGppdPuZfcl5B-W0ulsx_-jGMD1Vy5YqjOM80L-wHKrYV5sQcUtjQDdUY_Q05AKluH_allUO435wS4hT5SZfksPg5lyKLo9NMR1er-fkcAlIX9mn3g2Zzt_mGftzd_t487N--H3_6-b6oUZpzFIL124AUWrjUJFWndCgOHnO11KgMOCMdKLlSqFG3bWkeN933m-kR3IS5Bm7OPXOKT7vKS92DBmp_G2iuM9WrJUCAaaA_ARiijkn6u2cwujSwXKwR592Z4tPe_RpQdris2S-v5W7XJz0yU0Y8nuw46rV7ZG7OnHFGP0NlGzGQBOSD4lwsT6G_7zyAsWWjFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28440209</pqid></control><display><type>article</type><title>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</title><source>ScienceDirect Freedom Collection</source><creator>Antoniotti, M. ; Piazza, C. ; Policriti, A. ; Simeoni, M. ; Mishra, B.</creator><creatorcontrib>Antoniotti, M. ; Piazza, C. ; Policriti, A. ; Simeoni, M. ; Mishra, B.</creatorcontrib><description>Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g.,
PLAS,
Octave/
Matlab
tm
). Usually, numerical solutions (
traces or
trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and
Simpathica) and here we continue our investigation more deeply.
We propose the use of
hybrid automata and we discuss the use of the notions of
bisimulation and
collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the
projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2004.03.064</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Automata. Abstract machines. Turing machines ; Biochemical models ; Bisimulation ; Collapsing ; Computer science; control theory; systems ; Exact sciences and technology ; General logic ; Hybrid automata ; Logic and foundations ; Mathematical analysis ; Mathematical logic, foundations, set theory ; Mathematics ; Ordinary differential equations ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2004-09, Vol.325 (1), p.45-67</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</citedby><cites>FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16145754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Antoniotti, M.</creatorcontrib><creatorcontrib>Piazza, C.</creatorcontrib><creatorcontrib>Policriti, A.</creatorcontrib><creatorcontrib>Simeoni, M.</creatorcontrib><creatorcontrib>Mishra, B.</creatorcontrib><title>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</title><title>Theoretical computer science</title><description>Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g.,
PLAS,
Octave/
Matlab
tm
). Usually, numerical solutions (
traces or
trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and
Simpathica) and here we continue our investigation more deeply.
We propose the use of
hybrid automata and we discuss the use of the notions of
bisimulation and
collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the
projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Biochemical models</subject><subject>Bisimulation</subject><subject>Collapsing</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>General logic</subject><subject>Hybrid automata</subject><subject>Logic and foundations</subject><subject>Mathematical analysis</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpods0P6A3X5qb3dGHrVVyCiFJC4Fe0rPQjsZZLbblSN7S_ffRZgO5VZcBzfO-Eg9j3zg0HHj3Y9csmBsBoBqQDXTqA1vxtTa1EEZ9ZCuQoGppdPuZfcl5B-W0ulsx_-jGMD1Vy5YqjOM80L-wHKrYV5sQcUtjQDdUY_Q05AKluH_allUO435wS4hT5SZfksPg5lyKLo9NMR1er-fkcAlIX9mn3g2Zzt_mGftzd_t487N--H3_6-b6oUZpzFIL124AUWrjUJFWndCgOHnO11KgMOCMdKLlSqFG3bWkeN933m-kR3IS5Bm7OPXOKT7vKS92DBmp_G2iuM9WrJUCAaaA_ARiijkn6u2cwujSwXKwR592Z4tPe_RpQdris2S-v5W7XJz0yU0Y8nuw46rV7ZG7OnHFGP0NlGzGQBOSD4lwsT6G_7zyAsWWjFk</recordid><startdate>20040928</startdate><enddate>20040928</enddate><creator>Antoniotti, M.</creator><creator>Piazza, C.</creator><creator>Policriti, A.</creator><creator>Simeoni, M.</creator><creator>Mishra, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040928</creationdate><title>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</title><author>Antoniotti, M. ; Piazza, C. ; Policriti, A. ; Simeoni, M. ; Mishra, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Biochemical models</topic><topic>Bisimulation</topic><topic>Collapsing</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>General logic</topic><topic>Hybrid automata</topic><topic>Logic and foundations</topic><topic>Mathematical analysis</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antoniotti, M.</creatorcontrib><creatorcontrib>Piazza, C.</creatorcontrib><creatorcontrib>Policriti, A.</creatorcontrib><creatorcontrib>Simeoni, M.</creatorcontrib><creatorcontrib>Mishra, B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoniotti, M.</au><au>Piazza, C.</au><au>Policriti, A.</au><au>Simeoni, M.</au><au>Mishra, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice</atitle><jtitle>Theoretical computer science</jtitle><date>2004-09-28</date><risdate>2004</risdate><volume>325</volume><issue>1</issue><spage>45</spage><epage>67</epage><pages>45-67</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Many biological systems can be modeled using systems of ordinary differential algebraic equations (e.g., S-systems), thus allowing the study of their solutions and behavior automatically with suitable software tools (e.g.,
PLAS,
Octave/
Matlab
tm
). Usually, numerical solutions (
traces or
trajectories) for appropriate initial conditions are analyzed in order to infer significant properties of the biological systems under study. When several variables are involved and the traces span over a long interval of time, the analysis phase necessitates automation in a scalable and efficient manner. Earlier, we have advocated and experimented with the use of automata and temporal logics for this purpose (XS-systems and
Simpathica) and here we continue our investigation more deeply.
We propose the use of
hybrid automata and we discuss the use of the notions of
bisimulation and
collapsing for a “qualitative” analysis of the temporal evolution of biological systems. As compared with our previous approach, hybrid automata allow maintenance of more information about the differential equations (S-system) than standard automata. The use of the notion of bisimulation in the definition of the
projection operation (restrictions to a subset of “interesting” variables) makes it possible to work with reduced automata satisfying the same formulae as the initial ones. Finally, the notion of collapsing is introduced to move toward still simpler and equivalent automaton taming the complexity in terms of states whose number depends on the attained level of approximation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2004.03.064</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2004-09, Vol.325 (1), p.45-67 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_28440209 |
source | ScienceDirect Freedom Collection |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Automata. Abstract machines. Turing machines Biochemical models Bisimulation Collapsing Computer science control theory systems Exact sciences and technology General logic Hybrid automata Logic and foundations Mathematical analysis Mathematical logic, foundations, set theory Mathematics Ordinary differential equations Sciences and techniques of general use Theoretical computing |
title | Taming the complexity of biochemical models through bisimulation and collapsing: theory and practice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taming%20the%20complexity%20of%20biochemical%20models%20through%20bisimulation%20and%20collapsing:%20theory%20and%20practice&rft.jtitle=Theoretical%20computer%20science&rft.au=Antoniotti,%20M.&rft.date=2004-09-28&rft.volume=325&rft.issue=1&rft.spage=45&rft.epage=67&rft.pages=45-67&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2004.03.064&rft_dat=%3Cproquest_cross%3E28440209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-2a5b0cc379ac4e74627041ed11832c290a93a25144c7c765e41ff6ddb3dcea303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28440209&rft_id=info:pmid/&rfr_iscdi=true |