Loading…
Noise reduction for magnetic resonance images via adaptive multiscale products thresholding
Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant...
Saved in:
Published in: | IEEE transactions on medical imaging 2003-09, Vol.22 (9), p.1089-1099 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2003.816958 |