Loading…

Noise reduction for magnetic resonance images via adaptive multiscale products thresholding

Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2003-09, Vol.22 (9), p.1089-1099
Main Authors: Bao, Paul, Zhang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3
cites cdi_FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3
container_end_page 1099
container_issue 9
container_start_page 1089
container_title IEEE transactions on medical imaging
container_volume 22
creator Bao, Paul
Zhang, Lei
description Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods.
doi_str_mv 10.1109/TMI.2003.816958
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28440515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1225843</ieee_id><sourcerecordid>73620196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzBo9exBkENTTbKq_e44S_AhEvUQQPAy9PdVJh9nptXsm4L-3ll2IeNBTQ_HU21X1MPacw5pz6M6uPl-sBYBcO2467R6wFdfatUKr7w_ZCoR1LYARJ-xJrbcAXGnoHrMTLjpthFEr9uNLThWbgsMS5pSnJubSbP31hHMKVK558lPAJlENa3OXfOMHv5vTHTbbZZxTDX7EZlfyPqA28w313ORxSNP1U_Yo-rHis-N7yr59eH91_qm9_Prx4vzdZRu0grnVXGjrAENQmnd8wCg2QRrHo4tGSLBoFQiMWis9RJBWKinjxgZvpbMQ5Sl7e8ilKX4uWOd-S2PhOPoJ81J75yQoYcAQ-eafpJVGAO_-DwqnFGiuCXz1F3iblzLRuvStEk5Yawk6O0Ch5FoLxn5X6KDlV8-h33vsyWO_99gfPFLHy2PsstnicM8fxRHw-gj4vYFYyFKq95wWpNpy4l4cuISIf8QI7eiKvwFMrq1P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884282777</pqid></control><display><type>article</type><title>Noise reduction for magnetic resonance images via adaptive multiscale products thresholding</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bao, Paul ; Zhang, Lei</creator><creatorcontrib>Bao, Paul ; Zhang, Lei</creatorcontrib><description>Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2003.816958</identifier><identifier>PMID: 12956264</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive white noise ; Algorithms ; Biological and medical sciences ; Feedback ; Gaussian noise ; Humans ; Image edge detection ; Image Enhancement - methods ; Liver - anatomy &amp; histology ; Magnetic noise ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical sciences ; Multivariate Analysis ; Noise reduction ; Rician channels ; Signal Processing, Computer-Assisted ; Signal to noise ratio ; Spine - anatomy &amp; histology ; Stochastic Processes ; Wavelet transforms</subject><ispartof>IEEE transactions on medical imaging, 2003-09, Vol.22 (9), p.1089-1099</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3</citedby><cites>FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1225843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15245071$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12956264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Paul</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Noise reduction for magnetic resonance images via adaptive multiscale products thresholding</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods.</description><subject>Additive white noise</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Feedback</subject><subject>Gaussian noise</subject><subject>Humans</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Liver - anatomy &amp; histology</subject><subject>Magnetic noise</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Multivariate Analysis</subject><subject>Noise reduction</subject><subject>Rician channels</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal to noise ratio</subject><subject>Spine - anatomy &amp; histology</subject><subject>Stochastic Processes</subject><subject>Wavelet transforms</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFEEQhhtRzBo9exBkENTTbKq_e44S_AhEvUQQPAy9PdVJh9nptXsm4L-3ll2IeNBTQ_HU21X1MPacw5pz6M6uPl-sBYBcO2467R6wFdfatUKr7w_ZCoR1LYARJ-xJrbcAXGnoHrMTLjpthFEr9uNLThWbgsMS5pSnJubSbP31hHMKVK558lPAJlENa3OXfOMHv5vTHTbbZZxTDX7EZlfyPqA28w313ORxSNP1U_Yo-rHis-N7yr59eH91_qm9_Prx4vzdZRu0grnVXGjrAENQmnd8wCg2QRrHo4tGSLBoFQiMWis9RJBWKinjxgZvpbMQ5Sl7e8ilKX4uWOd-S2PhOPoJ81J75yQoYcAQ-eafpJVGAO_-DwqnFGiuCXz1F3iblzLRuvStEk5Yawk6O0Ch5FoLxn5X6KDlV8-h33vsyWO_99gfPFLHy2PsstnicM8fxRHw-gj4vYFYyFKq95wWpNpy4l4cuISIf8QI7eiKvwFMrq1P</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Bao, Paul</creator><creator>Zhang, Lei</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>Noise reduction for magnetic resonance images via adaptive multiscale products thresholding</title><author>Bao, Paul ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Additive white noise</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Feedback</topic><topic>Gaussian noise</topic><topic>Humans</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Liver - anatomy &amp; histology</topic><topic>Magnetic noise</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Multivariate Analysis</topic><topic>Noise reduction</topic><topic>Rician channels</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal to noise ratio</topic><topic>Spine - anatomy &amp; histology</topic><topic>Stochastic Processes</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Bao, Paul</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Paul</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise reduction for magnetic resonance images via adaptive multiscale products thresholding</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>22</volume><issue>9</issue><spage>1089</spage><epage>1099</epage><pages>1089-1099</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Edge-preserving denoising is of great interest in medical image processing. This paper presents a wavelet-based multiscale products thresholding scheme for noise suppression of magnetic resonance images. A Canny edge detector-like dyadic wavelet transform is employed. This results in the significant features in images evolving with high magnitude across wavelet scales, while noise decays rapidly. To exploit the wavelet interscale dependencies we multiply the adjacent wavelet subbands to enhance edge structures while weakening noise. In the multiscale products, edges can be effectively distinguished from noise. Thereafter, an adaptive threshold is calculated and imposed on the products, instead of on the wavelet coefficients, to identify important features. Experiments show that the proposed scheme better suppresses noise and preserves edges than other wavelet-thresholding denoising methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12956264</pmid><doi>10.1109/TMI.2003.816958</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2003-09, Vol.22 (9), p.1089-1099
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_28440515
source IEEE Electronic Library (IEL) Journals
subjects Additive white noise
Algorithms
Biological and medical sciences
Feedback
Gaussian noise
Humans
Image edge detection
Image Enhancement - methods
Liver - anatomy & histology
Magnetic noise
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical sciences
Multivariate Analysis
Noise reduction
Rician channels
Signal Processing, Computer-Assisted
Signal to noise ratio
Spine - anatomy & histology
Stochastic Processes
Wavelet transforms
title Noise reduction for magnetic resonance images via adaptive multiscale products thresholding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20reduction%20for%20magnetic%20resonance%20images%20via%20adaptive%20multiscale%20products%20thresholding&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Bao,%20Paul&rft.date=2003-09-01&rft.volume=22&rft.issue=9&rft.spage=1089&rft.epage=1099&rft.pages=1089-1099&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2003.816958&rft_dat=%3Cproquest_ieee_%3E73620196%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-5125780ecc45191def2bc3681f8f62307e7402ef5545df0373433fb7ca73870f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884282777&rft_id=info:pmid/12956264&rft_ieee_id=1225843&rfr_iscdi=true