Loading…
Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal
Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethy...
Saved in:
Published in: | Environmental research 2023-11, Vol.236 (Pt 1), p.116730-116730, Article 116730 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153 |
container_end_page | 116730 |
container_issue | Pt 1 |
container_start_page | 116730 |
container_title | Environmental research |
container_volume | 236 |
creator | Wang, Siying Wang, Yili Dong, Shuoxun Li, Xiaolin Liu, Chenyang |
description | Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg−1 h−1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La–P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%–46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1–2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.
[Display omitted]
•The maximum P adsorption capacity of p-MTCH-La(OH)3 was 107.23 ± 4.96 mg P/g.•The affinity of p-MTCH-La(OH)3 toward P was strong over the pH of 3–11.•Simultaneous dissolution of CaCO3 and chitosan promoted bifunctional sites.•Rapid unsaturated adsorption in 1–2 h facilitated p-MTCH-La(OH)3 recycling.•P adsorbed mechanisms were electrostatic attraction and La–P ligand exchange. |
doi_str_mv | 10.1016/j.envres.2023.116730 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2844098116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935123015347</els_id><sourcerecordid>3153601730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EotPCGyDkJZsMvuQy2SChqkClSizo3rKdk8ajxA7HyUjzCLw1Z5TCEhaWZfk7l___GXsnxV4KWX887iGeEPJeCaX3UtaNFi_YToq2LkRb6ZdsJ4TURasrecWucz7SU1ZavGZXuqmEEGW1Y79-nKMfMMW05vHMfYp5wdUvIUWeej4EQIt-CN6OfE5IFPeDjRHGzG3suLcXNHieV-yth8svPgGn8tHGhdB1KoZzh-kJRt4n5Gjn0PF5SJkOUj-EKZ3s-Ia96u2Y4e3zfcMev9w93n4rHr5_vb_9_FB43VZLAXAg-apx4GqoLAmVXrTq0IrGNtJJaHvvSt0oJ1yvRed7pw6lUgqcUyT_hn3Y2s6Yfq6QFzOF7GGkbYHUGU1MLSSZ-V-U-paiPZD1hJYb6jHljNCbGcNk8WykMJe4zNFscZlLXGaLi8reP09Y3QTd36I_-RDwaQPIbzhRGCb7ANFDFxD8YroU_j3hN8Ejq4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844098116</pqid></control><display><type>article</type><title>Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wang, Siying ; Wang, Yili ; Dong, Shuoxun ; Li, Xiaolin ; Liu, Chenyang</creator><creatorcontrib>Wang, Siying ; Wang, Yili ; Dong, Shuoxun ; Li, Xiaolin ; Liu, Chenyang</creatorcontrib><description>Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg−1 h−1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La–P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%–46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1–2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.
[Display omitted]
•The maximum P adsorption capacity of p-MTCH-La(OH)3 was 107.23 ± 4.96 mg P/g.•The affinity of p-MTCH-La(OH)3 toward P was strong over the pH of 3–11.•Simultaneous dissolution of CaCO3 and chitosan promoted bifunctional sites.•Rapid unsaturated adsorption in 1–2 h facilitated p-MTCH-La(OH)3 recycling.•P adsorbed mechanisms were electrostatic attraction and La–P ligand exchange.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2023.116730</identifier><identifier>PMID: 37500045</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>adsorbents ; adsorption ; Bifunctional adsorption sites ; chitosan ; desorption ; ecosystems ; Electrostatic interaction contribution ; electrostatic interactions ; hydrogels ; La–P complex ; magnetism ; Phosphate ; phosphates ; phosphorus ; Regeneration ; Unsaturated adsorption ; wastewater</subject><ispartof>Environmental research, 2023-11, Vol.236 (Pt 1), p.116730-116730, Article 116730</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153</citedby><cites>FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37500045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Siying</creatorcontrib><creatorcontrib>Wang, Yili</creatorcontrib><creatorcontrib>Dong, Shuoxun</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><creatorcontrib>Liu, Chenyang</creatorcontrib><title>Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg−1 h−1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La–P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%–46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1–2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.
[Display omitted]
•The maximum P adsorption capacity of p-MTCH-La(OH)3 was 107.23 ± 4.96 mg P/g.•The affinity of p-MTCH-La(OH)3 toward P was strong over the pH of 3–11.•Simultaneous dissolution of CaCO3 and chitosan promoted bifunctional sites.•Rapid unsaturated adsorption in 1–2 h facilitated p-MTCH-La(OH)3 recycling.•P adsorbed mechanisms were electrostatic attraction and La–P ligand exchange.</description><subject>adsorbents</subject><subject>adsorption</subject><subject>Bifunctional adsorption sites</subject><subject>chitosan</subject><subject>desorption</subject><subject>ecosystems</subject><subject>Electrostatic interaction contribution</subject><subject>electrostatic interactions</subject><subject>hydrogels</subject><subject>La–P complex</subject><subject>magnetism</subject><subject>Phosphate</subject><subject>phosphates</subject><subject>phosphorus</subject><subject>Regeneration</subject><subject>Unsaturated adsorption</subject><subject>wastewater</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhi0EotPCGyDkJZsMvuQy2SChqkClSizo3rKdk8ajxA7HyUjzCLw1Z5TCEhaWZfk7l___GXsnxV4KWX887iGeEPJeCaX3UtaNFi_YToq2LkRb6ZdsJ4TURasrecWucz7SU1ZavGZXuqmEEGW1Y79-nKMfMMW05vHMfYp5wdUvIUWeej4EQIt-CN6OfE5IFPeDjRHGzG3suLcXNHieV-yth8svPgGn8tHGhdB1KoZzh-kJRt4n5Gjn0PF5SJkOUj-EKZ3s-Ia96u2Y4e3zfcMev9w93n4rHr5_vb_9_FB43VZLAXAg-apx4GqoLAmVXrTq0IrGNtJJaHvvSt0oJ1yvRed7pw6lUgqcUyT_hn3Y2s6Yfq6QFzOF7GGkbYHUGU1MLSSZ-V-U-paiPZD1hJYb6jHljNCbGcNk8WykMJe4zNFscZlLXGaLi8reP09Y3QTd36I_-RDwaQPIbzhRGCb7ANFDFxD8YroU_j3hN8Ejq4w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Siying</creator><creator>Wang, Yili</creator><creator>Dong, Shuoxun</creator><creator>Li, Xiaolin</creator><creator>Liu, Chenyang</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231101</creationdate><title>Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal</title><author>Wang, Siying ; Wang, Yili ; Dong, Shuoxun ; Li, Xiaolin ; Liu, Chenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adsorbents</topic><topic>adsorption</topic><topic>Bifunctional adsorption sites</topic><topic>chitosan</topic><topic>desorption</topic><topic>ecosystems</topic><topic>Electrostatic interaction contribution</topic><topic>electrostatic interactions</topic><topic>hydrogels</topic><topic>La–P complex</topic><topic>magnetism</topic><topic>Phosphate</topic><topic>phosphates</topic><topic>phosphorus</topic><topic>Regeneration</topic><topic>Unsaturated adsorption</topic><topic>wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Siying</creatorcontrib><creatorcontrib>Wang, Yili</creatorcontrib><creatorcontrib>Dong, Shuoxun</creatorcontrib><creatorcontrib>Li, Xiaolin</creatorcontrib><creatorcontrib>Liu, Chenyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Siying</au><au>Wang, Yili</au><au>Dong, Shuoxun</au><au>Li, Xiaolin</au><au>Liu, Chenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>236</volume><issue>Pt 1</issue><spage>116730</spage><epage>116730</epage><pages>116730-116730</pages><artnum>116730</artnum><issn>0013-9351</issn><eissn>1096-0953</eissn><abstract>Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg−1 h−1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La–P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%–46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1–2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.
[Display omitted]
•The maximum P adsorption capacity of p-MTCH-La(OH)3 was 107.23 ± 4.96 mg P/g.•The affinity of p-MTCH-La(OH)3 toward P was strong over the pH of 3–11.•Simultaneous dissolution of CaCO3 and chitosan promoted bifunctional sites.•Rapid unsaturated adsorption in 1–2 h facilitated p-MTCH-La(OH)3 recycling.•P adsorbed mechanisms were electrostatic attraction and La–P ligand exchange.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>37500045</pmid><doi>10.1016/j.envres.2023.116730</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-9351 |
ispartof | Environmental research, 2023-11, Vol.236 (Pt 1), p.116730-116730, Article 116730 |
issn | 0013-9351 1096-0953 |
language | eng |
recordid | cdi_proquest_miscellaneous_2844098116 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | adsorbents adsorption Bifunctional adsorption sites chitosan desorption ecosystems Electrostatic interaction contribution electrostatic interactions hydrogels La–P complex magnetism Phosphate phosphates phosphorus Regeneration Unsaturated adsorption wastewater |
title | Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronously%20construction%20of%20hierarchical%20porous%20channels%20and%20cationic%20surface%20charge%20on%20lanthanum-hydrogel%20for%20rapid%20phosphorus%20removal&rft.jtitle=Environmental%20research&rft.au=Wang,%20Siying&rft.date=2023-11-01&rft.volume=236&rft.issue=Pt%201&rft.spage=116730&rft.epage=116730&rft.pages=116730-116730&rft.artnum=116730&rft.issn=0013-9351&rft.eissn=1096-0953&rft_id=info:doi/10.1016/j.envres.2023.116730&rft_dat=%3Cproquest_cross%3E3153601730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-ee810127beb6e5a9531c0928907a71b1e9fcb4372b0bf30dcfb284222ebb2153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844098116&rft_id=info:pmid/37500045&rfr_iscdi=true |