Loading…

Biophysical Electrical and Mechanical Stimulations for Promoting Chondrogenesis of Stem Cells on PEDOT:PSS Conductive Polymer Scaffolds

The investigation of the effects of electrical and mechanical stimulations on chondrogenesis in tissue engineering scaffolds is essential for realizing successful cartilage repair and regeneration. The aim of articular cartilage tissue engineering is to enhance the function of damaged or diseased ar...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2023-08, Vol.24 (8), p.3858-3871
Main Authors: Liu, Chun-Ting, Yu, Jiashing, Lin, Min-Hsuan, Chang, Kai-Hsiang, Lin, Che-Yu, Cheng, Nai-Chen, Wu, Po-I, Huang, Chun-Wei, Zhang, Pin-Yu, Hung, Min-Tzu, Hsiao, Yu-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The investigation of the effects of electrical and mechanical stimulations on chondrogenesis in tissue engineering scaffolds is essential for realizing successful cartilage repair and regeneration. The aim of articular cartilage tissue engineering is to enhance the function of damaged or diseased articular cartilage, which has limited regenerative capacity. Studies have shown that electrical stimulation (ES) promotes mesenchymal stem cell (MSC) chondrogenesis, while mechanical stimulation (MS) enhances the chondrogenic differentiation capacity of MSCs. Therefore, understanding the impact of these stimuli on chondrogenesis is crucial for researchers to develop more effective tissue engineering strategies for cartilage repair and regeneration. This study focuses on the preparation of poly­(3,4-ethylenedioxythiophene)-poly­(styrenesulfonate) (PEDOT:PSS) conductive polymer (CP) scaffolds using the freeze-drying method. The scaffolds were fabricated with varying concentrations (0, 1, 3, and 10 wt %) of (3-glycidyloxypropyl) trimethoxysilane (GOPS) as a crosslinker and an additive to tailor the scaffold properties. To gain a comprehensive understanding of the material characteristics and the phase aggregation phenomenon of PEDOT:PSS scaffolds, the researchers performed theoretical calculations of solubility parameters and surface energies of PSS, PSS-GOPS, and PEDOT polymers, as well as conducted material analyses. Additionally, the study investigated the potential of promoting chondrogenic differentiation of human adipose stem cells by applying external ES or MS on a PEDOT:PSS CP scaffold. Compared to the group without stimulation, the group that underwent stimulation exhibited significantly up-regulated expression levels of chondrogenic characteristic genes, such as SOX9 and COL2A1. Moreover, the immunofluorescence staining images exhibited a more vigorous fluorescence intensity of SOX9 and COL II proteins that was consistent with the trend of the gene expression results. In the MS experiment, the strain excitation exerted on the scaffold was simulated and transformed into stress. The simulated stress response showed that the peak gradually decreased with time and approached a constant value, with the negative value of stress representing the generation of tensile stress. This stress response quantification could aid researchers in determining specific MS conditions for various materials in tissue engineering, and the applied stress conditions could be further
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.3c00506