Loading…

Diversity and characterization of antagonistic bacteria against Pseudomonas syringae pv. actinidiae isolated from kiwifruit rhizosphere

Abstract Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is a severe global disease. However, effective biological control agents for controlling Psa are currently unavailable. This study aimed to screen potential biological control agents against Psa from the kiwifrui...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology letters 2023-01, Vol.370
Main Authors: Yan, Zhewei, Fu, Min, Mir, Sajad Hussain, Zhang, Lixin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is a severe global disease. However, effective biological control agents for controlling Psa are currently unavailable. This study aimed to screen potential biological control agents against Psa from the kiwifruit rhizosphere. In this study, a total of 722 isolates of bacteria were isolated from the rhizosphere of kiwifruit orchards in five regions of China. A total of 82 strains of rhizosphere bacteria showed antagonistic effects against Psa on plates. Based on amplified ribosomal DNA restriction analysis (ARDRA), these antagonistic rhizosphere bacteria were grouped into 17 clusters. BLAST analyses based on 16S rRNA gene sequence revealed 95.44%–100% sequence identity to recognized species. The isolated strains belonged to genus Acinetobacter, Bacillus, Chryseobacterium, Flavobacterium, Glutamicibacter, Lysinibacillus, Lysobacter, Pseudomonas, Pseudarthrobacter, and Streptomyces, respectively. A total of four representative strains were selected to determine their extracellular metabolites and cell-free supernatant activity against Psa in vitro. They all produce protease and none of them produce glucanase. One strain of Pseudomonas sp. produces siderophore. Strains of Bacillus spp. and Flavobacteria sp. produce cellulase, and Flavobacteria sp. also produce chitinase. Our results suggested that the kiwifruit rhizosphere soils contain a variety of antagonistic bacteria that effectively inhibit the growth of Psa. Kiwifruit rhizosphere contains a variety of antagonistic bacteria that effectively inhibit the growth of Psa.
ISSN:1574-6968
0378-1097
1574-6968
DOI:10.1093/femsle/fnad078