Loading…

Changes on chromosome 11p15.5 as specific marker for embryonal rhabdomyosarcoma?

Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with respect to clinical behavior and tumor morphology. The paternal uniparental disomy (pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In addition to LOH, UPD, the MLPA technique (ME030kit) also determi...

Full description

Saved in:
Bibliographic Details
Published in:Genes chromosomes & cancer 2023-12, Vol.62 (12), p.732-739
Main Authors: Vicha, Ales, Jencova, Pavla, Novakova-Kodetova, Daniela, Stolova, Lucie, Voriskova, Dagmar, Vyletalova, Kristyna, Broz, Petr, Drahokoupilova, Eva, Guha, Anasuya, Kopecká, Marie, Krskova, Lenka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rhabdomyosarcomas (RMS) constitute a heterogeneous spectrum of tumors with respect to clinical behavior and tumor morphology. The paternal uniparental disomy (pUPD) of 11p15.5 is a molecular change described mainly in embryonal RMS. In addition to LOH, UPD, the MLPA technique (ME030kit) also determines copy number variants and methylation of H19 and KCNQ1OT1 genes, which have not been systematically investigated in RMS. All 127 RMS tumors were divided by histology and PAX status into four groups, pleomorphic histology (n = 2); alveolar RMS PAX fusion-positive (PAX+; n = 39); embryonal RMS (n = 70) and fusion-negative RMS with alveolar pattern (PAX-RMS-AP; n = 16). The following changes were detected; negative (n = 21), pUPD (n = 75), gain of paternal allele (n = 9), loss of maternal allele (n = 9), hypermethylation of H19 (n = 6), hypomethylation of KCNQ1OT1 (n = 6), and deletion of CDKN1C (n = 1). We have shown no difference in the frequency of pUPD 11p15.5 in all groups. Thus, we have proven that changes in the 11p15.5 are not only specific to the embryonal RMS (ERMS), but are often also present in alveolar RMS (ARMS). We have found changes that have not yet been described in RMS. We also demonstrated new potential diagnostic markers for ERMS (paternal duplication and UPD of whole chromosome 11) and for ARMS PAX+ (hypomethylation KCNQ1OT1).
ISSN:1045-2257
1098-2264
DOI:10.1002/gcc.23194