Loading…
A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism
The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis r...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2023-08, Vol.52 (33), p.11481-11488 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 11488 |
container_issue | 33 |
container_start_page | 11481 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 52 |
creator | Shaikh, Shoyebmohamad F Aftab, Sikandar Pandit, Bidhan Al-Enizi, Abdullah M Ubaidullah, Mohd Ekar, Satish Hussain, Sajjad Khollam, Yogesh B More, Pravin S Mane, Rajaram S |
description | The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs. |
doi_str_mv | 10.1039/d3dt01414b |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2845655199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845655199</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-994aef4d6c972f74354af7e0db09f3f4096a2d84d3355c56ef1227bbad1104b73</originalsourceid><addsrcrecordid>eNpdjs9KAzEQh4MoWKsXn2DAi5e1-bvbeFtKq0Kphyr0VrKbpE3pbuomW3wUH9eIxYOnGWa--eaH0C3BDwQzOdJMR0w44dUZGhBeFJmkjJ__9TS_RFch7DCmFAs6QF8lLNySjiZQ--bgg4sGVADVgmtbf1TRHdOg9dpAo6LpnNqD9R0Er13fZM63UKn4szDhEcwnJEMPq3IxXaYzDdNVOVtCiL1OAESftEcTotskGcStOYkS4Tu1SU9MvVWtC801urBqH8zNqQ7R-2z6NnnO5q9PL5Nynh0oyWMmJVfGcp3XsqC24ExwZQuDdYWlZZZjmSuqx1wzJkQtcmMJpUVVKU0I5lXBhuj-13vo_Eefoq0bF2qz36vW-D6s6ZiLXAgiZULv_qE733dtSpcowamkOZHsG8GMd5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854292619</pqid></control><display><type>article</type><title>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Shaikh, Shoyebmohamad F ; Aftab, Sikandar ; Pandit, Bidhan ; Al-Enizi, Abdullah M ; Ubaidullah, Mohd ; Ekar, Satish ; Hussain, Sajjad ; Khollam, Yogesh B ; More, Pravin S ; Mane, Rajaram S</creator><creatorcontrib>Shaikh, Shoyebmohamad F ; Aftab, Sikandar ; Pandit, Bidhan ; Al-Enizi, Abdullah M ; Ubaidullah, Mohd ; Ekar, Satish ; Hussain, Sajjad ; Khollam, Yogesh B ; More, Pravin S ; Mane, Rajaram S</creatorcontrib><description>The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt01414b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Amorphous materials ; Anodes ; Carbonaceous materials ; Chemical bonds ; Composite materials ; Current density ; Diffraction patterns ; Electrode materials ; Electrodes ; Fine structure ; High current ; Sodium ; Sodium-ion batteries ; X ray absorption</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-08, Vol.52 (33), p.11481-11488</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shaikh, Shoyebmohamad F</creatorcontrib><creatorcontrib>Aftab, Sikandar</creatorcontrib><creatorcontrib>Pandit, Bidhan</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M</creatorcontrib><creatorcontrib>Ubaidullah, Mohd</creatorcontrib><creatorcontrib>Ekar, Satish</creatorcontrib><creatorcontrib>Hussain, Sajjad</creatorcontrib><creatorcontrib>Khollam, Yogesh B</creatorcontrib><creatorcontrib>More, Pravin S</creatorcontrib><creatorcontrib>Mane, Rajaram S</creatorcontrib><title>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.</description><subject>Activated carbon</subject><subject>Amorphous materials</subject><subject>Anodes</subject><subject>Carbonaceous materials</subject><subject>Chemical bonds</subject><subject>Composite materials</subject><subject>Current density</subject><subject>Diffraction patterns</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Fine structure</subject><subject>High current</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>X ray absorption</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjs9KAzEQh4MoWKsXn2DAi5e1-bvbeFtKq0Kphyr0VrKbpE3pbuomW3wUH9eIxYOnGWa--eaH0C3BDwQzOdJMR0w44dUZGhBeFJmkjJ__9TS_RFch7DCmFAs6QF8lLNySjiZQ--bgg4sGVADVgmtbf1TRHdOg9dpAo6LpnNqD9R0Er13fZM63UKn4szDhEcwnJEMPq3IxXaYzDdNVOVtCiL1OAESftEcTotskGcStOYkS4Tu1SU9MvVWtC801urBqH8zNqQ7R-2z6NnnO5q9PL5Nynh0oyWMmJVfGcp3XsqC24ExwZQuDdYWlZZZjmSuqx1wzJkQtcmMJpUVVKU0I5lXBhuj-13vo_Eefoq0bF2qz36vW-D6s6ZiLXAgiZULv_qE733dtSpcowamkOZHsG8GMd5Y</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Shaikh, Shoyebmohamad F</creator><creator>Aftab, Sikandar</creator><creator>Pandit, Bidhan</creator><creator>Al-Enizi, Abdullah M</creator><creator>Ubaidullah, Mohd</creator><creator>Ekar, Satish</creator><creator>Hussain, Sajjad</creator><creator>Khollam, Yogesh B</creator><creator>More, Pravin S</creator><creator>Mane, Rajaram S</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230822</creationdate><title>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</title><author>Shaikh, Shoyebmohamad F ; Aftab, Sikandar ; Pandit, Bidhan ; Al-Enizi, Abdullah M ; Ubaidullah, Mohd ; Ekar, Satish ; Hussain, Sajjad ; Khollam, Yogesh B ; More, Pravin S ; Mane, Rajaram S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-994aef4d6c972f74354af7e0db09f3f4096a2d84d3355c56ef1227bbad1104b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activated carbon</topic><topic>Amorphous materials</topic><topic>Anodes</topic><topic>Carbonaceous materials</topic><topic>Chemical bonds</topic><topic>Composite materials</topic><topic>Current density</topic><topic>Diffraction patterns</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Fine structure</topic><topic>High current</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaikh, Shoyebmohamad F</creatorcontrib><creatorcontrib>Aftab, Sikandar</creatorcontrib><creatorcontrib>Pandit, Bidhan</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M</creatorcontrib><creatorcontrib>Ubaidullah, Mohd</creatorcontrib><creatorcontrib>Ekar, Satish</creatorcontrib><creatorcontrib>Hussain, Sajjad</creatorcontrib><creatorcontrib>Khollam, Yogesh B</creatorcontrib><creatorcontrib>More, Pravin S</creatorcontrib><creatorcontrib>Mane, Rajaram S</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikh, Shoyebmohamad F</au><au>Aftab, Sikandar</au><au>Pandit, Bidhan</au><au>Al-Enizi, Abdullah M</au><au>Ubaidullah, Mohd</au><au>Ekar, Satish</au><au>Hussain, Sajjad</au><au>Khollam, Yogesh B</au><au>More, Pravin S</au><au>Mane, Rajaram S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>52</volume><issue>33</issue><spage>11481</spage><epage>11488</epage><pages>11481-11488</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3dt01414b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2023-08, Vol.52 (33), p.11481-11488 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_2845655199 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Activated carbon Amorphous materials Anodes Carbonaceous materials Chemical bonds Composite materials Current density Diffraction patterns Electrode materials Electrodes Fine structure High current Sodium Sodium-ion batteries X ray absorption |
title | A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NiS2/C%20composite%20as%20an%20innovative%20anode%20material%20for%20sodium-ion%20batteries:%20ex%20situ%20XANES%20and%20EXAFS%20studies%20to%20investigate%20the%20sodium%20storage%20mechanism&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Shaikh,%20Shoyebmohamad%20F&rft.date=2023-08-22&rft.volume=52&rft.issue=33&rft.spage=11481&rft.epage=11488&rft.pages=11481-11488&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt01414b&rft_dat=%3Cproquest%3E2845655199%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-994aef4d6c972f74354af7e0db09f3f4096a2d84d3355c56ef1227bbad1104b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854292619&rft_id=info:pmid/&rfr_iscdi=true |