Loading…

A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism

The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis r...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2023-08, Vol.52 (33), p.11481-11488
Main Authors: Shaikh, Shoyebmohamad F, Aftab, Sikandar, Pandit, Bidhan, Al-Enizi, Abdullah M, Ubaidullah, Mohd, Ekar, Satish, Hussain, Sajjad, Khollam, Yogesh B, More, Pravin S, Mane, Rajaram S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 11488
container_issue 33
container_start_page 11481
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 52
creator Shaikh, Shoyebmohamad F
Aftab, Sikandar
Pandit, Bidhan
Al-Enizi, Abdullah M
Ubaidullah, Mohd
Ekar, Satish
Hussain, Sajjad
Khollam, Yogesh B
More, Pravin S
Mane, Rajaram S
description The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.
doi_str_mv 10.1039/d3dt01414b
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2845655199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845655199</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-994aef4d6c972f74354af7e0db09f3f4096a2d84d3355c56ef1227bbad1104b73</originalsourceid><addsrcrecordid>eNpdjs9KAzEQh4MoWKsXn2DAi5e1-bvbeFtKq0Kphyr0VrKbpE3pbuomW3wUH9eIxYOnGWa--eaH0C3BDwQzOdJMR0w44dUZGhBeFJmkjJ__9TS_RFch7DCmFAs6QF8lLNySjiZQ--bgg4sGVADVgmtbf1TRHdOg9dpAo6LpnNqD9R0Er13fZM63UKn4szDhEcwnJEMPq3IxXaYzDdNVOVtCiL1OAESftEcTotskGcStOYkS4Tu1SU9MvVWtC801urBqH8zNqQ7R-2z6NnnO5q9PL5Nynh0oyWMmJVfGcp3XsqC24ExwZQuDdYWlZZZjmSuqx1wzJkQtcmMJpUVVKU0I5lXBhuj-13vo_Eefoq0bF2qz36vW-D6s6ZiLXAgiZULv_qE733dtSpcowamkOZHsG8GMd5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854292619</pqid></control><display><type>article</type><title>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Shaikh, Shoyebmohamad F ; Aftab, Sikandar ; Pandit, Bidhan ; Al-Enizi, Abdullah M ; Ubaidullah, Mohd ; Ekar, Satish ; Hussain, Sajjad ; Khollam, Yogesh B ; More, Pravin S ; Mane, Rajaram S</creator><creatorcontrib>Shaikh, Shoyebmohamad F ; Aftab, Sikandar ; Pandit, Bidhan ; Al-Enizi, Abdullah M ; Ubaidullah, Mohd ; Ekar, Satish ; Hussain, Sajjad ; Khollam, Yogesh B ; More, Pravin S ; Mane, Rajaram S</creatorcontrib><description>The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt01414b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Amorphous materials ; Anodes ; Carbonaceous materials ; Chemical bonds ; Composite materials ; Current density ; Diffraction patterns ; Electrode materials ; Electrodes ; Fine structure ; High current ; Sodium ; Sodium-ion batteries ; X ray absorption</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-08, Vol.52 (33), p.11481-11488</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shaikh, Shoyebmohamad F</creatorcontrib><creatorcontrib>Aftab, Sikandar</creatorcontrib><creatorcontrib>Pandit, Bidhan</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M</creatorcontrib><creatorcontrib>Ubaidullah, Mohd</creatorcontrib><creatorcontrib>Ekar, Satish</creatorcontrib><creatorcontrib>Hussain, Sajjad</creatorcontrib><creatorcontrib>Khollam, Yogesh B</creatorcontrib><creatorcontrib>More, Pravin S</creatorcontrib><creatorcontrib>Mane, Rajaram S</creatorcontrib><title>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.</description><subject>Activated carbon</subject><subject>Amorphous materials</subject><subject>Anodes</subject><subject>Carbonaceous materials</subject><subject>Chemical bonds</subject><subject>Composite materials</subject><subject>Current density</subject><subject>Diffraction patterns</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Fine structure</subject><subject>High current</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>X ray absorption</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdjs9KAzEQh4MoWKsXn2DAi5e1-bvbeFtKq0Kphyr0VrKbpE3pbuomW3wUH9eIxYOnGWa--eaH0C3BDwQzOdJMR0w44dUZGhBeFJmkjJ__9TS_RFch7DCmFAs6QF8lLNySjiZQ--bgg4sGVADVgmtbf1TRHdOg9dpAo6LpnNqD9R0Er13fZM63UKn4szDhEcwnJEMPq3IxXaYzDdNVOVtCiL1OAESftEcTotskGcStOYkS4Tu1SU9MvVWtC801urBqH8zNqQ7R-2z6NnnO5q9PL5Nynh0oyWMmJVfGcp3XsqC24ExwZQuDdYWlZZZjmSuqx1wzJkQtcmMJpUVVKU0I5lXBhuj-13vo_Eefoq0bF2qz36vW-D6s6ZiLXAgiZULv_qE733dtSpcowamkOZHsG8GMd5Y</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Shaikh, Shoyebmohamad F</creator><creator>Aftab, Sikandar</creator><creator>Pandit, Bidhan</creator><creator>Al-Enizi, Abdullah M</creator><creator>Ubaidullah, Mohd</creator><creator>Ekar, Satish</creator><creator>Hussain, Sajjad</creator><creator>Khollam, Yogesh B</creator><creator>More, Pravin S</creator><creator>Mane, Rajaram S</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230822</creationdate><title>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</title><author>Shaikh, Shoyebmohamad F ; Aftab, Sikandar ; Pandit, Bidhan ; Al-Enizi, Abdullah M ; Ubaidullah, Mohd ; Ekar, Satish ; Hussain, Sajjad ; Khollam, Yogesh B ; More, Pravin S ; Mane, Rajaram S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-994aef4d6c972f74354af7e0db09f3f4096a2d84d3355c56ef1227bbad1104b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activated carbon</topic><topic>Amorphous materials</topic><topic>Anodes</topic><topic>Carbonaceous materials</topic><topic>Chemical bonds</topic><topic>Composite materials</topic><topic>Current density</topic><topic>Diffraction patterns</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Fine structure</topic><topic>High current</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaikh, Shoyebmohamad F</creatorcontrib><creatorcontrib>Aftab, Sikandar</creatorcontrib><creatorcontrib>Pandit, Bidhan</creatorcontrib><creatorcontrib>Al-Enizi, Abdullah M</creatorcontrib><creatorcontrib>Ubaidullah, Mohd</creatorcontrib><creatorcontrib>Ekar, Satish</creatorcontrib><creatorcontrib>Hussain, Sajjad</creatorcontrib><creatorcontrib>Khollam, Yogesh B</creatorcontrib><creatorcontrib>More, Pravin S</creatorcontrib><creatorcontrib>Mane, Rajaram S</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikh, Shoyebmohamad F</au><au>Aftab, Sikandar</au><au>Pandit, Bidhan</au><au>Al-Enizi, Abdullah M</au><au>Ubaidullah, Mohd</au><au>Ekar, Satish</au><au>Hussain, Sajjad</au><au>Khollam, Yogesh B</au><au>More, Pravin S</au><au>Mane, Rajaram S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>52</volume><issue>33</issue><spage>11481</spage><epage>11488</epage><pages>11481-11488</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer–Emmett–Teller (BET) study shows that the surface area is close to 148 m2 g−1. At a current density of 50 mA g−1, the NiS2/C composite exhibits a high capacity of 480 mA h g−1 during the initial cycle, which subsequently decreases to 333 mA h g−1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g−1 at a high current density of 2000 mA g−1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3dt01414b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2023-08, Vol.52 (33), p.11481-11488
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2845655199
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Activated carbon
Amorphous materials
Anodes
Carbonaceous materials
Chemical bonds
Composite materials
Current density
Diffraction patterns
Electrode materials
Electrodes
Fine structure
High current
Sodium
Sodium-ion batteries
X ray absorption
title A NiS2/C composite as an innovative anode material for sodium-ion batteries: ex situ XANES and EXAFS studies to investigate the sodium storage mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NiS2/C%20composite%20as%20an%20innovative%20anode%20material%20for%20sodium-ion%20batteries:%20ex%20situ%20XANES%20and%20EXAFS%20studies%20to%20investigate%20the%20sodium%20storage%20mechanism&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Shaikh,%20Shoyebmohamad%20F&rft.date=2023-08-22&rft.volume=52&rft.issue=33&rft.spage=11481&rft.epage=11488&rft.pages=11481-11488&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt01414b&rft_dat=%3Cproquest%3E2845655199%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p216t-994aef4d6c972f74354af7e0db09f3f4096a2d84d3355c56ef1227bbad1104b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854292619&rft_id=info:pmid/&rfr_iscdi=true