Loading…
Neofunctionalization of tandem duplicate genes encoding putative β-L-arabinofuranosidases in Arabidopsis
Abstract Tandem duplication, one of the major types of duplication, provides the raw material for the evolution of divergent functions. In this study, we identified 1 pair of tandem duplicate genes (AT5G12950 and AT5G12960) in Arabidopsis (Arabidopsis thaliana) that originated within the last 16 mil...
Saved in:
Published in: | Plant physiology (Bethesda) 2023-08, Vol.192 (4), p.2855-2870 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Tandem duplication, one of the major types of duplication, provides the raw material for the evolution of divergent functions. In this study, we identified 1 pair of tandem duplicate genes (AT5G12950 and AT5G12960) in Arabidopsis (Arabidopsis thaliana) that originated within the last 16 million years after the split of Arabidopsis from the Capsella-Boechera ancestor. We systematically used bioinformatic tools to redefine their putative biochemical function as β-L-arabinofuranosidases that release L-Arabinose from the β-L-Araf-containing molecules in Arabidopsis. Comprehensive transcriptomic and proteomic analyses using various datasets showed divergent expression patterns among tissues between the 2 duplicate genes. We further collected phenotypic data from 2 types of measurements to indicate that AT5G12950 and AT5G12960 have different roles resulting in divergent phenotypic effects. Overall, AT5G12950 and AT5G12960 represent putative β-L-arabinofuranosidase encoding genes in Arabidopsis. After duplication, 1 duplicate copy developed diverged biological functions and contributed to a different phenotypic evolution in Arabidopsis.
Tandem duplicate genes encoding putative β-l-arabinofuranosidase developed divergent biological functions and contributed to the phenotypic evolution in Arabidopsis. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1093/plphys/kiad169 |