Loading…

Unsupervised texture segmentation of images using tuned matched Gabor filters

Recent studies have confirmed that the multichannel Gabor decomposition represents an excellent tool for image segmentation and boundary detection. Unfortunately, this approach when used for unsupervised image analysis tasks imposes excessive storage requirements due to the nonorthogonality of the b...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 1995-06, Vol.4 (6), p.863-870
Main Authors: Teuner, A., Pichler, O., Hosticka, B.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies have confirmed that the multichannel Gabor decomposition represents an excellent tool for image segmentation and boundary detection. Unfortunately, this approach when used for unsupervised image analysis tasks imposes excessive storage requirements due to the nonorthogonality of the basis functions and is computationally highly demanding. In this correspondence, we propose a novel method for efficient image analysis that uses tuned matched Gabor filters. The algorithmic determination of the parameters of the Gabor filters is based on the analysis of spectral feature contrasts obtained from iterative computation of pyramidal Gabor transforms with progressive dyadic decrease of elementary cell sizes. The method requires no a priori knowledge of the analyzed image so that the analysis is unsupervised. Computer simulations applied to different classes of textures illustrate the matching property of the tuned Gabor filters derived using our determination algorithm. Also, their capability to extract significant image information and thus enable an easy and efficient low-level image analysis will be demonstrated.< >
ISSN:1057-7149
1941-0042
DOI:10.1109/83.388091