Loading…

Input-output invariants for linear multivariable systems

The problem of parameterization of the input-output relation of constant finite-dimensional linear multivariable systems is considered. As a first result it is shown that a precisely defined set of entries of the Markov parameters of a system constitutes a complete set of independent invariants of t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1980-02, Vol.25 (1), p.20-36
Main Authors: Bosgra, O., van der Weiden, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3
cites cdi_FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3
container_end_page 36
container_issue 1
container_start_page 20
container_title IEEE transactions on automatic control
container_volume 25
creator Bosgra, O.
van der Weiden, A.
description The problem of parameterization of the input-output relation of constant finite-dimensional linear multivariable systems is considered. As a first result it is shown that a precisely defined set of entries of the Markov parameters of a system constitutes a complete set of independent invariants of the system. Specializing this result a new complete set of invariants is derived in which the input and output Kronecker indices and a canonical permutation constitute the structural invariants, whereas the set of numerical parameters in the set of invariants directly defines the parameters in a related new canonical form. The number of numerical parameters involved may be strictly less than the number of parameters in existing canonical forms. The results have been obtained by formulating a realization problem in terms of Rosenbrock's concept of a system matrix. Prototype algorithms for obtaining the proposed invariants from a state-space description or from a sequence of Markov parameters are presented.
doi_str_mv 10.1109/TAC.1980.1102260
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28474643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1102260</ieee_id><sourcerecordid>28987493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKt7wc2s3E29eU6yLMVHoeCmrkNmvIHIPGqSEfrvndqC264uh_Odu_gIuaewoBTM03a5WlCj_xJjCi7IjEqpSyYZvyQzAKpLw7S6JjcpfU1RCUFnRK_73ZjLYczTKUL_42JwfU6FH2LRhh5dLLqxzeGvqFss0j5l7NItufKuTXh3unPy8fK8Xb2Vm_fX9Wq5KRsuRS5RSq4NeorCV6xyjAntuWDMMRAcjQMlqTC1_9RK14b5qWhAKQ7ooFI1n5PH499dHL5HTNl2ITXYtq7HYUyWaaMrYfgZoKiEEmeAXIMApScQjmATh5QieruLoXNxbynYg3Q7SbcH6fYkfZo8HCcBEf_xU_sLX458SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23804068</pqid></control><display><type>article</type><title>Input-output invariants for linear multivariable systems</title><source>IEEE Xplore (Online service)</source><creator>Bosgra, O. ; van der Weiden, A.</creator><creatorcontrib>Bosgra, O. ; van der Weiden, A.</creatorcontrib><description>The problem of parameterization of the input-output relation of constant finite-dimensional linear multivariable systems is considered. As a first result it is shown that a precisely defined set of entries of the Markov parameters of a system constitutes a complete set of independent invariants of the system. Specializing this result a new complete set of invariants is derived in which the input and output Kronecker indices and a canonical permutation constitute the structural invariants, whereas the set of numerical parameters in the set of invariants directly defines the parameters in a related new canonical form. The number of numerical parameters involved may be strictly less than the number of parameters in existing canonical forms. The results have been obtained by formulating a realization problem in terms of Rosenbrock's concept of a system matrix. Prototype algorithms for obtaining the proposed invariants from a state-space description or from a sequence of Markov parameters are presented.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1980.1102260</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Density estimation robust algorithm ; Geometry ; Kalman filters ; MIMO ; Prototypes</subject><ispartof>IEEE transactions on automatic control, 1980-02, Vol.25 (1), p.20-36</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3</citedby><cites>FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1102260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bosgra, O.</creatorcontrib><creatorcontrib>van der Weiden, A.</creatorcontrib><title>Input-output invariants for linear multivariable systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The problem of parameterization of the input-output relation of constant finite-dimensional linear multivariable systems is considered. As a first result it is shown that a precisely defined set of entries of the Markov parameters of a system constitutes a complete set of independent invariants of the system. Specializing this result a new complete set of invariants is derived in which the input and output Kronecker indices and a canonical permutation constitute the structural invariants, whereas the set of numerical parameters in the set of invariants directly defines the parameters in a related new canonical form. The number of numerical parameters involved may be strictly less than the number of parameters in existing canonical forms. The results have been obtained by formulating a realization problem in terms of Rosenbrock's concept of a system matrix. Prototype algorithms for obtaining the proposed invariants from a state-space description or from a sequence of Markov parameters are presented.</description><subject>Density estimation robust algorithm</subject><subject>Geometry</subject><subject>Kalman filters</subject><subject>MIMO</subject><subject>Prototypes</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKt7wc2s3E29eU6yLMVHoeCmrkNmvIHIPGqSEfrvndqC264uh_Odu_gIuaewoBTM03a5WlCj_xJjCi7IjEqpSyYZvyQzAKpLw7S6JjcpfU1RCUFnRK_73ZjLYczTKUL_42JwfU6FH2LRhh5dLLqxzeGvqFss0j5l7NItufKuTXh3unPy8fK8Xb2Vm_fX9Wq5KRsuRS5RSq4NeorCV6xyjAntuWDMMRAcjQMlqTC1_9RK14b5qWhAKQ7ooFI1n5PH499dHL5HTNl2ITXYtq7HYUyWaaMrYfgZoKiEEmeAXIMApScQjmATh5QieruLoXNxbynYg3Q7SbcH6fYkfZo8HCcBEf_xU_sLX458SQ</recordid><startdate>19800201</startdate><enddate>19800201</enddate><creator>Bosgra, O.</creator><creator>van der Weiden, A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19800201</creationdate><title>Input-output invariants for linear multivariable systems</title><author>Bosgra, O. ; van der Weiden, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Density estimation robust algorithm</topic><topic>Geometry</topic><topic>Kalman filters</topic><topic>MIMO</topic><topic>Prototypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosgra, O.</creatorcontrib><creatorcontrib>van der Weiden, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosgra, O.</au><au>van der Weiden, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Input-output invariants for linear multivariable systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1980-02-01</date><risdate>1980</risdate><volume>25</volume><issue>1</issue><spage>20</spage><epage>36</epage><pages>20-36</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The problem of parameterization of the input-output relation of constant finite-dimensional linear multivariable systems is considered. As a first result it is shown that a precisely defined set of entries of the Markov parameters of a system constitutes a complete set of independent invariants of the system. Specializing this result a new complete set of invariants is derived in which the input and output Kronecker indices and a canonical permutation constitute the structural invariants, whereas the set of numerical parameters in the set of invariants directly defines the parameters in a related new canonical form. The number of numerical parameters involved may be strictly less than the number of parameters in existing canonical forms. The results have been obtained by formulating a realization problem in terms of Rosenbrock's concept of a system matrix. Prototype algorithms for obtaining the proposed invariants from a state-space description or from a sequence of Markov parameters are presented.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1980.1102260</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1980-02, Vol.25 (1), p.20-36
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28474643
source IEEE Xplore (Online service)
subjects Density estimation robust algorithm
Geometry
Kalman filters
MIMO
Prototypes
title Input-output invariants for linear multivariable systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Input-output%20invariants%20for%20linear%20multivariable%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bosgra,%20O.&rft.date=1980-02-01&rft.volume=25&rft.issue=1&rft.spage=20&rft.epage=36&rft.pages=20-36&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1980.1102260&rft_dat=%3Cproquest_ieee_%3E28987493%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-e55389ef1e4f727a2248f3422a2043e9a065149bfd868b92f2a2c06630ea076b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=23804068&rft_id=info:pmid/&rft_ieee_id=1102260&rfr_iscdi=true