Loading…

Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis

Abstract Background and aims During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients...

Full description

Saved in:
Bibliographic Details
Published in:The journal of clinical endocrinology and metabolism 2023-12, Vol.109 (1), p.e155-e162
Main Authors: Fisker, Frederikke A, Voss, Thomas S, Svart, Mads V, Kampmann, Ulla, Vendelbo, Mikkel H, Bengtsen, Mads B, Lauritzen, Esben S, Møller, Niels, Jessen, Niels
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c351t-39093aab7b5b998c836b477c581e3f46c61c42e19a16cbb31cf0df969450be183
container_end_page e162
container_issue 1
container_start_page e155
container_title The journal of clinical endocrinology and metabolism
container_volume 109
creator Fisker, Frederikke A
Voss, Thomas S
Svart, Mads V
Kampmann, Ulla
Vendelbo, Mikkel H
Bengtsen, Mads B
Lauritzen, Esben S
Møller, Niels
Jessen, Niels
description Abstract Background and aims During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. Materials and methods Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. Results During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. Conclusion DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. Clinical Trial Registration number NCT02077348.
doi_str_mv 10.1210/clinem/dgad464
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2848228110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779501119</galeid><oup_id>10.1210/clinem/dgad464</oup_id><sourcerecordid>A779501119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-39093aab7b5b998c836b477c581e3f46c61c42e19a16cbb31cf0df969450be183</originalsourceid><addsrcrecordid>eNqFkUFr3DAQhUVJSDZprjkGQy7JwRuNJVvWcdlN2yUpCTSF3oQkjxe1sr2R7EL-fbXstqdAmcMMM988ZniEXAKdQwH0znrXY3fXbHTDK_6BzEDyMhcgxRGZUVpALkXx45ScxfiTUuC8ZCfklImy5FTUM_Ky7uOUNLJvbtPrVGyydcyeA0YMv7HJdpNf6HHUPvs6ResxW01hh93r4N-yldMGR2ezBxwHbV0zRBc_kuNW-4gXh3xOvn-6f1l-yR-fPq-Xi8fcshLGnEkqmdZGmNJIWduaVYYLYcsakLW8shVYXiBIDZU1hoFtadPKKn1IDULNzsnNXncbhtcJ46g6Fy16r3scpqiKmtdFUQPQhF7v0Y32qFzfDmPQdoerhRCypAAgEzV_h0rRYOfs0GPrUv-9BRuGGAO2ahtcp8ObAqp2Bqm9QepgUFq4Opw8mQ6bf_hfRxJwuweGafs_sT_ospp9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848228110</pqid></control><display><type>article</type><title>Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis</title><source>Oxford Journals Online</source><creator>Fisker, Frederikke A ; Voss, Thomas S ; Svart, Mads V ; Kampmann, Ulla ; Vendelbo, Mikkel H ; Bengtsen, Mads B ; Lauritzen, Esben S ; Møller, Niels ; Jessen, Niels</creator><creatorcontrib>Fisker, Frederikke A ; Voss, Thomas S ; Svart, Mads V ; Kampmann, Ulla ; Vendelbo, Mikkel H ; Bengtsen, Mads B ; Lauritzen, Esben S ; Møller, Niels ; Jessen, Niels</creatorcontrib><description>Abstract Background and aims During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. Materials and methods Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. Results During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P &lt; .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P &lt; .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. Conclusion DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. Clinical Trial Registration number NCT02077348.</description><identifier>ISSN: 0021-972X</identifier><identifier>EISSN: 1945-7197</identifier><identifier>DOI: 10.1210/clinem/dgad464</identifier><identifier>PMID: 37554078</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Cellular signal transduction ; Cross-Over Studies ; Dextrose ; Diabetes Mellitus, Type 1 - drug therapy ; Diabetes therapy ; Diabetic acidosis ; Diabetic Ketoacidosis - metabolism ; Ethylenediaminetetraacetic acid ; Fatty acids ; Genetic translation ; Glucose ; Glucose - metabolism ; Glycogen ; Glycogen Synthase - metabolism ; Humans ; Insulin ; Insulin - metabolism ; Insulin resistance ; Insulin Resistance - physiology ; Ketoacidosis ; Muscle, Skeletal - metabolism ; Muscles ; Protein binding ; Protein biosynthesis ; Protein kinases ; Proteins ; Signal Transduction ; Synthesis ; Type 1 diabetes</subject><ispartof>The journal of clinical endocrinology and metabolism, 2023-12, Vol.109 (1), p.e155-e162</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2024 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-39093aab7b5b998c836b477c581e3f46c61c42e19a16cbb31cf0df969450be183</cites><orcidid>0000-0003-1604-3796 ; 0000-0003-2128-4551 ; 0000-0001-5613-7274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37554078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisker, Frederikke A</creatorcontrib><creatorcontrib>Voss, Thomas S</creatorcontrib><creatorcontrib>Svart, Mads V</creatorcontrib><creatorcontrib>Kampmann, Ulla</creatorcontrib><creatorcontrib>Vendelbo, Mikkel H</creatorcontrib><creatorcontrib>Bengtsen, Mads B</creatorcontrib><creatorcontrib>Lauritzen, Esben S</creatorcontrib><creatorcontrib>Møller, Niels</creatorcontrib><creatorcontrib>Jessen, Niels</creatorcontrib><title>Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis</title><title>The journal of clinical endocrinology and metabolism</title><addtitle>J Clin Endocrinol Metab</addtitle><description>Abstract Background and aims During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. Materials and methods Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. Results During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P &lt; .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P &lt; .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. Conclusion DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. Clinical Trial Registration number NCT02077348.</description><subject>Cellular signal transduction</subject><subject>Cross-Over Studies</subject><subject>Dextrose</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Diabetes therapy</subject><subject>Diabetic acidosis</subject><subject>Diabetic Ketoacidosis - metabolism</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fatty acids</subject><subject>Genetic translation</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glycogen</subject><subject>Glycogen Synthase - metabolism</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Ketoacidosis</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Protein binding</subject><subject>Protein biosynthesis</subject><subject>Protein kinases</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>Synthesis</subject><subject>Type 1 diabetes</subject><issn>0021-972X</issn><issn>1945-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3DAQhUVJSDZprjkGQy7JwRuNJVvWcdlN2yUpCTSF3oQkjxe1sr2R7EL-fbXstqdAmcMMM988ZniEXAKdQwH0znrXY3fXbHTDK_6BzEDyMhcgxRGZUVpALkXx45ScxfiTUuC8ZCfklImy5FTUM_Ky7uOUNLJvbtPrVGyydcyeA0YMv7HJdpNf6HHUPvs6ResxW01hh93r4N-yldMGR2ezBxwHbV0zRBc_kuNW-4gXh3xOvn-6f1l-yR-fPq-Xi8fcshLGnEkqmdZGmNJIWduaVYYLYcsakLW8shVYXiBIDZU1hoFtadPKKn1IDULNzsnNXncbhtcJ46g6Fy16r3scpqiKmtdFUQPQhF7v0Y32qFzfDmPQdoerhRCypAAgEzV_h0rRYOfs0GPrUv-9BRuGGAO2ahtcp8ObAqp2Bqm9QepgUFq4Opw8mQ6bf_hfRxJwuweGafs_sT_ospp9</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Fisker, Frederikke A</creator><creator>Voss, Thomas S</creator><creator>Svart, Mads V</creator><creator>Kampmann, Ulla</creator><creator>Vendelbo, Mikkel H</creator><creator>Bengtsen, Mads B</creator><creator>Lauritzen, Esben S</creator><creator>Møller, Niels</creator><creator>Jessen, Niels</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1604-3796</orcidid><orcidid>https://orcid.org/0000-0003-2128-4551</orcidid><orcidid>https://orcid.org/0000-0001-5613-7274</orcidid></search><sort><creationdate>20231221</creationdate><title>Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis</title><author>Fisker, Frederikke A ; Voss, Thomas S ; Svart, Mads V ; Kampmann, Ulla ; Vendelbo, Mikkel H ; Bengtsen, Mads B ; Lauritzen, Esben S ; Møller, Niels ; Jessen, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-39093aab7b5b998c836b477c581e3f46c61c42e19a16cbb31cf0df969450be183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cellular signal transduction</topic><topic>Cross-Over Studies</topic><topic>Dextrose</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Diabetes therapy</topic><topic>Diabetic acidosis</topic><topic>Diabetic Ketoacidosis - metabolism</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fatty acids</topic><topic>Genetic translation</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glycogen</topic><topic>Glycogen Synthase - metabolism</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Ketoacidosis</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Protein binding</topic><topic>Protein biosynthesis</topic><topic>Protein kinases</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>Synthesis</topic><topic>Type 1 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisker, Frederikke A</creatorcontrib><creatorcontrib>Voss, Thomas S</creatorcontrib><creatorcontrib>Svart, Mads V</creatorcontrib><creatorcontrib>Kampmann, Ulla</creatorcontrib><creatorcontrib>Vendelbo, Mikkel H</creatorcontrib><creatorcontrib>Bengtsen, Mads B</creatorcontrib><creatorcontrib>Lauritzen, Esben S</creatorcontrib><creatorcontrib>Møller, Niels</creatorcontrib><creatorcontrib>Jessen, Niels</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of clinical endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisker, Frederikke A</au><au>Voss, Thomas S</au><au>Svart, Mads V</au><au>Kampmann, Ulla</au><au>Vendelbo, Mikkel H</au><au>Bengtsen, Mads B</au><au>Lauritzen, Esben S</au><au>Møller, Niels</au><au>Jessen, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis</atitle><jtitle>The journal of clinical endocrinology and metabolism</jtitle><addtitle>J Clin Endocrinol Metab</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>109</volume><issue>1</issue><spage>e155</spage><epage>e162</epage><pages>e155-e162</pages><issn>0021-972X</issn><eissn>1945-7197</eissn><abstract>Abstract Background and aims During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. Materials and methods Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. Results During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P &lt; .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P &lt; .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. Conclusion DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. Clinical Trial Registration number NCT02077348.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37554078</pmid><doi>10.1210/clinem/dgad464</doi><orcidid>https://orcid.org/0000-0003-1604-3796</orcidid><orcidid>https://orcid.org/0000-0003-2128-4551</orcidid><orcidid>https://orcid.org/0000-0001-5613-7274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-972X
ispartof The journal of clinical endocrinology and metabolism, 2023-12, Vol.109 (1), p.e155-e162
issn 0021-972X
1945-7197
language eng
recordid cdi_proquest_miscellaneous_2848228110
source Oxford Journals Online
subjects Cellular signal transduction
Cross-Over Studies
Dextrose
Diabetes Mellitus, Type 1 - drug therapy
Diabetes therapy
Diabetic acidosis
Diabetic Ketoacidosis - metabolism
Ethylenediaminetetraacetic acid
Fatty acids
Genetic translation
Glucose
Glucose - metabolism
Glycogen
Glycogen Synthase - metabolism
Humans
Insulin
Insulin - metabolism
Insulin resistance
Insulin Resistance - physiology
Ketoacidosis
Muscle, Skeletal - metabolism
Muscles
Protein binding
Protein biosynthesis
Protein kinases
Proteins
Signal Transduction
Synthesis
Type 1 diabetes
title Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20Signaling%20Is%20Preserved%20in%20Skeletal%20Muscle%20During%20Early%20Diabetic%20Ketoacidosis&rft.jtitle=The%20journal%20of%20clinical%20endocrinology%20and%20metabolism&rft.au=Fisker,%20Frederikke%20A&rft.date=2023-12-21&rft.volume=109&rft.issue=1&rft.spage=e155&rft.epage=e162&rft.pages=e155-e162&rft.issn=0021-972X&rft.eissn=1945-7197&rft_id=info:doi/10.1210/clinem/dgad464&rft_dat=%3Cgale_proqu%3EA779501119%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-39093aab7b5b998c836b477c581e3f46c61c42e19a16cbb31cf0df969450be183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848228110&rft_id=info:pmid/37554078&rft_galeid=A779501119&rft_oup_id=10.1210/clinem/dgad464&rfr_iscdi=true