Loading…

Evaluation of Unity 1.5 T MR‐linac plan quality in patients with prostate cancer

The Unity magnetic resonance (MR) linear accelerator (MRL) with MR‐guided adaptive radiotherapy (MRgART) is capable of online MRgART where images are acquired on the treatment day and the radiation treatment plan is immediately replanned and performed. We evaluated the MRgART plan quality and plan r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied clinical medical physics 2023-12, Vol.24 (12), p.e14122-n/a
Main Authors: Tanaka, Shohei, Kadoya, Noriyuki, Ishizawa, Miyu, Katsuta, Yoshiyuki, Arai, Kazuhiro, Takahashi, Haruna, Xiao, Yushan, Takahashi, Noriyoshi, Sato, Kiyokazu, Takeda, Ken, Jingu, Keiichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Unity magnetic resonance (MR) linear accelerator (MRL) with MR‐guided adaptive radiotherapy (MRgART) is capable of online MRgART where images are acquired on the treatment day and the radiation treatment plan is immediately replanned and performed. We evaluated the MRgART plan quality and plan reproducibility of the Unity MRL in patients with prostate cancer. There were five low‐ or moderate‐risk and five high‐risk patients who received 36.25 Gy or 40 Gy, respectively in five fractions. All patients underwent simulation magnetic resonance imaging (MRI) and five online adaptive MRI. We created plans for 5, 7, 9, 16, and 20 beams and for 60, 100, and 150 segments. We evaluated the target and organ doses for different number of beams and segments, respectively. Variation in dose constraint between the simulation plan and online adaptive plan was measured for each patient to assess plan reproducibility. The plan quality improved with the increasing number of beams. However, the proportion of significantly improved dose constraints decreased as the number of beams increased. For some dose parameters, there were statistically significant differences between 60 and 100 segments, and 100 and 150 segments. The plan of five beams exhibited limited reproducibility. The number of segments had minimal impact on plan reproducibility, but 60 segments sometimes failed to meet dose constraints for online adaptive plan. The optimization and delivery time increased with the number of beams and segments. We do not recommend using five or fewer beams for a reproducible and high‐quality plan in the Unity MRL. In addition, many number of segments and beams may help meet dose constraints during online adaptive plan. Treatment with the Unity MRL should be performed with the appropriate number of beams and segments to achieve a good balance among plan quality, delivery time, and optimization time.
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.14122