Loading…
On sharp Strichartz inequalities in low dimensions
Recently, Foschi gave a proof of a sharp Strichartz inequality in one and two dimensions. In this paper, a new representation in terms of an orthogonal projection operator is obtained for the space-time norm of solutions of the free Schrödinger equation in dimensions one and two. As a consequence, t...
Saved in:
Published in: | International Mathematics Research Notices 2006, Vol.2006 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | International Mathematics Research Notices |
container_volume | 2006 |
creator | Hundertmark, Dirk Zharnitsky, Vadim |
description | Recently, Foschi gave a proof of a sharp Strichartz inequality in one and two dimensions. In this paper, a new representation in terms of an orthogonal projection operator is obtained for the space-time norm of solutions of the free Schrödinger equation in dimensions one and two. As a consequence, the sharp Strichartz inequality follows from the elementary property that orthogonal projections do not increase the norm. |
doi_str_mv | 10.1155/IMRN/2006/34080 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28494270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28494270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqUws2ZiC7m-dmJ7ROXRSoXyrBCL5SSOMKRJa6fi8etJKWK650rfOcNHyDGFU0rTNJlc398kCJAljIOEHTKgmRQxpUrs9hkEi4VCuU8OQngDQKGADgjOmii8Gr-MHjrvij5135Fr7Gptatc5G_onqtuPqHQL2wTXNuGQ7FWmDvbo7w7J0-XF42gcT2dXk9HZNC44YhdLhWjyHJmiJVKlWG6kLAturClMBVYVgmepoBypLKtUlrIUludgK5ZzhJwNycl2d-nb1dqGTi9cKGxdm8a266BRcsVRQA8mW7DwbQjeVnrp3cL4L01Bb9zojRu9caN_3fSNeNtwobOf_7jx7zoTTKR6_Pyi6a26m4r5uZ6zH901ZlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28494270</pqid></control><display><type>article</type><title>On sharp Strichartz inequalities in low dimensions</title><source>Oxford Journals Online</source><creator>Hundertmark, Dirk ; Zharnitsky, Vadim</creator><creatorcontrib>Hundertmark, Dirk ; Zharnitsky, Vadim</creatorcontrib><description>Recently, Foschi gave a proof of a sharp Strichartz inequality in one and two dimensions. In this paper, a new representation in terms of an orthogonal projection operator is obtained for the space-time norm of solutions of the free Schrödinger equation in dimensions one and two. As a consequence, the sharp Strichartz inequality follows from the elementary property that orthogonal projections do not increase the norm.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-1197</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/IMRN/2006/34080</identifier><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><ispartof>International Mathematics Research Notices, 2006, Vol.2006</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3</citedby><cites>FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Hundertmark, Dirk</creatorcontrib><creatorcontrib>Zharnitsky, Vadim</creatorcontrib><title>On sharp Strichartz inequalities in low dimensions</title><title>International Mathematics Research Notices</title><description>Recently, Foschi gave a proof of a sharp Strichartz inequality in one and two dimensions. In this paper, a new representation in terms of an orthogonal projection operator is obtained for the space-time norm of solutions of the free Schrödinger equation in dimensions one and two. As a consequence, the sharp Strichartz inequality follows from the elementary property that orthogonal projections do not increase the norm.</description><issn>1073-7928</issn><issn>1687-1197</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqUws2ZiC7m-dmJ7ROXRSoXyrBCL5SSOMKRJa6fi8etJKWK650rfOcNHyDGFU0rTNJlc398kCJAljIOEHTKgmRQxpUrs9hkEi4VCuU8OQngDQKGADgjOmii8Gr-MHjrvij5135Fr7Gptatc5G_onqtuPqHQL2wTXNuGQ7FWmDvbo7w7J0-XF42gcT2dXk9HZNC44YhdLhWjyHJmiJVKlWG6kLAturClMBVYVgmepoBypLKtUlrIUludgK5ZzhJwNycl2d-nb1dqGTi9cKGxdm8a266BRcsVRQA8mW7DwbQjeVnrp3cL4L01Bb9zojRu9caN_3fSNeNtwobOf_7jx7zoTTKR6_Pyi6a26m4r5uZ6zH901ZlQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Hundertmark, Dirk</creator><creator>Zharnitsky, Vadim</creator><general>Hindawi Publishing Corporation</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>On sharp Strichartz inequalities in low dimensions</title><author>Hundertmark, Dirk ; Zharnitsky, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hundertmark, Dirk</creatorcontrib><creatorcontrib>Zharnitsky, Vadim</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Mathematics Research Notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hundertmark, Dirk</au><au>Zharnitsky, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sharp Strichartz inequalities in low dimensions</atitle><jtitle>International Mathematics Research Notices</jtitle><date>2006</date><risdate>2006</risdate><volume>2006</volume><issn>1073-7928</issn><eissn>1687-1197</eissn><eissn>1687-0247</eissn><abstract>Recently, Foschi gave a proof of a sharp Strichartz inequality in one and two dimensions. In this paper, a new representation in terms of an orthogonal projection operator is obtained for the space-time norm of solutions of the free Schrödinger equation in dimensions one and two. As a consequence, the sharp Strichartz inequality follows from the elementary property that orthogonal projections do not increase the norm.</abstract><pub>Hindawi Publishing Corporation</pub><doi>10.1155/IMRN/2006/34080</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International Mathematics Research Notices, 2006, Vol.2006 |
issn | 1073-7928 1687-1197 1687-0247 |
language | eng |
recordid | cdi_proquest_miscellaneous_28494270 |
source | Oxford Journals Online |
title | On sharp Strichartz inequalities in low dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sharp%20Strichartz%20inequalities%20in%20low%20dimensions&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.au=Hundertmark,%20Dirk&rft.date=2006&rft.volume=2006&rft.issn=1073-7928&rft.eissn=1687-1197&rft_id=info:doi/10.1155/IMRN/2006/34080&rft_dat=%3Cproquest_cross%3E28494270%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-8922abb2391d21993ba88dc4aeacaf0e9c7465714218df58d8d7e4b0ef3b420b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28494270&rft_id=info:pmid/&rfr_iscdi=true |