Loading…
Lamellar Fluctuations Melt Ferroelectricity
We consider a standard Ginzburg-Landau model of a ferroelectric whose electrical polarization is coupled to gradients of elastic strain. At the harmonic level, such flexoelectric interaction is known to hybridize acoustic and optic phonon modes and lead to phases with modulated lattice structures th...
Saved in:
Published in: | Physical review letters 2023-07, Vol.131 (4), p.046801-046801, Article 046801 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a standard Ginzburg-Landau model of a ferroelectric whose electrical polarization is coupled to gradients of elastic strain. At the harmonic level, such flexoelectric interaction is known to hybridize acoustic and optic phonon modes and lead to phases with modulated lattice structures that precede the state with spontaneously broken inversion symmetry. Here, we use the self-consistent phonon approximation to calculate the effects of thermal and quantum polarization fluctuations on the bare hybridized modes to show that such long-range modulated order is unstable at all temperatures. We discuss the implications for the nearly ferroelectric SrTiO_{3} and KTaO_{3}, and we propose that these systems are melted versions of an underlying modulated state that is dominated by nonzero momentum thermal fluctuations except at the very lowest temperatures. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.131.046801 |