Loading…

Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit

Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals he...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2023-10, Vol.237, p.115498-115498, Article 115498
Main Authors: Izquierdo-López, Raúl, Fandan, Rajveer, Boscá, Alberto, Calle, Fernando, Pedrós, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023
cites cdi_FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023
container_end_page 115498
container_issue
container_start_page 115498
container_title Biosensors & bioelectronics
container_volume 237
creator Izquierdo-López, Raúl
Fandan, Rajveer
Boscá, Alberto
Calle, Fernando
Pedrós, Jorge
description Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.
doi_str_mv 10.1016/j.bios.2023.115498
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2850311892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566323004402</els_id><sourcerecordid>2850311892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023</originalsourceid><addsrcrecordid>eNp9kEFv3CAQhVHUKtmk-QM5VBx78QaMsY3USxWlTaRIOaQ9IwxDlpUNW8Ab7b8vltMeexgxQu89zfsQuqFkSwltb_fbwYW0rUnNtpTyRvRnaEP7jlVNzfgHtCGCtxVvW3aBLlPaE0I6Ksg5umBdUZCWb9DpZY5WaaiUDnPKTldv6giVie4IHr9GddiBB3wYVZqCdxon8ClEbJdx_hXiITqfy4bnMUeVd87jctaoThATNuHN4xxw3gEu_vUbj25y-RP6aNWY4Pr9vUK_vt__vHuonp5_PN59e6p0Q0iuDDeCD0xATdig7EAEUKZqbUVnG6bt0NOh1aahnTKNEtr2igijGO-7puMFzRX6suYeYvg9Q8pycknDOCoPpbKse04Ypb1YpPUq1TGkFMHKUm5S8SQpkQtyuZcLcrkglyvyYvr8nj8PE5h_lr-Mi-DrKoDS8uggyqQdeA3GRdBZmuD-l_8HgrGV7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850311892</pqid></control><display><type>article</type><title>Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Izquierdo-López, Raúl ; Fandan, Rajveer ; Boscá, Alberto ; Calle, Fernando ; Pedrós, Jorge</creator><creatorcontrib>Izquierdo-López, Raúl ; Fandan, Rajveer ; Boscá, Alberto ; Calle, Fernando ; Pedrós, Jorge</creatorcontrib><description>Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115498</identifier><identifier>PMID: 37423065</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Fano resonance ; Surface acoustic wave (SAW) ; Surface enhanced infrared absorption (SEIRA) ; Surface plasmon polariton ; Vibrational fingerprint</subject><ispartof>Biosensors &amp; bioelectronics, 2023-10, Vol.237, p.115498-115498, Article 115498</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023</citedby><cites>FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023</cites><orcidid>0000-0001-5900-1428 ; 0000-0001-9872-1698 ; 0000-0002-3154-0187 ; 0000-0001-7869-6704 ; 0000-0002-4885-8853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37423065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Izquierdo-López, Raúl</creatorcontrib><creatorcontrib>Fandan, Rajveer</creatorcontrib><creatorcontrib>Boscá, Alberto</creatorcontrib><creatorcontrib>Calle, Fernando</creatorcontrib><creatorcontrib>Pedrós, Jorge</creatorcontrib><title>Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.</description><subject>Fano resonance</subject><subject>Surface acoustic wave (SAW)</subject><subject>Surface enhanced infrared absorption (SEIRA)</subject><subject>Surface plasmon polariton</subject><subject>Vibrational fingerprint</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv3CAQhVHUKtmk-QM5VBx78QaMsY3USxWlTaRIOaQ9IwxDlpUNW8Ab7b8vltMeexgxQu89zfsQuqFkSwltb_fbwYW0rUnNtpTyRvRnaEP7jlVNzfgHtCGCtxVvW3aBLlPaE0I6Ksg5umBdUZCWb9DpZY5WaaiUDnPKTldv6giVie4IHr9GddiBB3wYVZqCdxon8ClEbJdx_hXiITqfy4bnMUeVd87jctaoThATNuHN4xxw3gEu_vUbj25y-RP6aNWY4Pr9vUK_vt__vHuonp5_PN59e6p0Q0iuDDeCD0xATdig7EAEUKZqbUVnG6bt0NOh1aahnTKNEtr2igijGO-7puMFzRX6suYeYvg9Q8pycknDOCoPpbKse04Ypb1YpPUq1TGkFMHKUm5S8SQpkQtyuZcLcrkglyvyYvr8nj8PE5h_lr-Mi-DrKoDS8uggyqQdeA3GRdBZmuD-l_8HgrGV7w</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Izquierdo-López, Raúl</creator><creator>Fandan, Rajveer</creator><creator>Boscá, Alberto</creator><creator>Calle, Fernando</creator><creator>Pedrós, Jorge</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5900-1428</orcidid><orcidid>https://orcid.org/0000-0001-9872-1698</orcidid><orcidid>https://orcid.org/0000-0002-3154-0187</orcidid><orcidid>https://orcid.org/0000-0001-7869-6704</orcidid><orcidid>https://orcid.org/0000-0002-4885-8853</orcidid></search><sort><creationdate>20231001</creationdate><title>Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit</title><author>Izquierdo-López, Raúl ; Fandan, Rajveer ; Boscá, Alberto ; Calle, Fernando ; Pedrós, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fano resonance</topic><topic>Surface acoustic wave (SAW)</topic><topic>Surface enhanced infrared absorption (SEIRA)</topic><topic>Surface plasmon polariton</topic><topic>Vibrational fingerprint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izquierdo-López, Raúl</creatorcontrib><creatorcontrib>Fandan, Rajveer</creatorcontrib><creatorcontrib>Boscá, Alberto</creatorcontrib><creatorcontrib>Calle, Fernando</creatorcontrib><creatorcontrib>Pedrós, Jorge</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izquierdo-López, Raúl</au><au>Fandan, Rajveer</au><au>Boscá, Alberto</au><au>Calle, Fernando</au><au>Pedrós, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>237</volume><spage>115498</spage><epage>115498</epage><pages>115498-115498</pages><artnum>115498</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>37423065</pmid><doi>10.1016/j.bios.2023.115498</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5900-1428</orcidid><orcidid>https://orcid.org/0000-0001-9872-1698</orcidid><orcidid>https://orcid.org/0000-0002-3154-0187</orcidid><orcidid>https://orcid.org/0000-0001-7869-6704</orcidid><orcidid>https://orcid.org/0000-0002-4885-8853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2023-10, Vol.237, p.115498-115498, Article 115498
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_2850311892
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Fano resonance
Surface acoustic wave (SAW)
Surface enhanced infrared absorption (SEIRA)
Surface plasmon polariton
Vibrational fingerprint
title Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-acoustic-wave-driven%20graphene%20plasmonic%20sensor%20for%20fingerprinting%20ultrathin%20biolayers%20down%20to%20the%20monolayer%20limit&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Izquierdo-L%C3%B3pez,%20Ra%C3%BAl&rft.date=2023-10-01&rft.volume=237&rft.spage=115498&rft.epage=115498&rft.pages=115498-115498&rft.artnum=115498&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115498&rft_dat=%3Cproquest_cross%3E2850311892%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-d5d95b39e203bafb09e13a2cf97f43cfb81b6cd417ad4a9cf8a09da3587475023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2850311892&rft_id=info:pmid/37423065&rfr_iscdi=true