Loading…

Age-related differences in associative memory recognition of Chinese characters and hippocampal subfield volumes

Associative memory is a type of hippocampal-dependent episodic memory that declines with age. Studies have examined the neural substrates underlying associative memory and considered the hippocampus holistically; however, the association between associative memory decline and volumetric change in hi...

Full description

Saved in:
Bibliographic Details
Published in:Biological psychology 2023-10, Vol.183, p.108657-108657, Article 108657
Main Authors: Lai, Ya-Mei, Chang, Yu-Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Associative memory is a type of hippocampal-dependent episodic memory that declines with age. Studies have examined the neural substrates underlying associative memory and considered the hippocampus holistically; however, the association between associative memory decline and volumetric change in hippocampal subfields in the context of normal aging remains uncharacterized. Leveraging the distinct linguistic features of Chinese characters to evaluate distinct types of false recognition, we investigated age-related differences in associative recognition and hippocampal subfield volumes, as well as the relationship between behavioral performance and hippocampal morphometry in 25 younger adults and 32 older adults. The results showed an age-related associative memory deficit, which was exacerbated after a 30-min delay. Older adults showed higher susceptibility to false alarm errors with recombined and orthographically related foils compared to phonologically or semantically related ones. Moreover, we detected a disproportionately age-related, time-dependent increase in orthographic errors. Older adults exhibited smaller volumes in all hippocampal subfields when compared to younger adults, with a less pronounced effect observed in the CA2/3 subfield. Group-collapsed correlational analyses revealed associations between specific hippocampal subfields and associative memory but not item memory. Additionally, multi-subfield regions had prominent associations with delayed recognition. These findings underscore the significance of multiple hippocampal subfields in various hippocampal-dependent processes including associative memory, recollection-based retrieval, and pattern separation ability. Moreover, our observations of age-related difficulty in differentiating perceptually similar foils from targets provide a unique opportunity for examining the essential contribution of individual hippocampal subfields to the pattern separation process in mnemonic recognition. •Age-related differences found in associative memory and hippocampal subfields.•Specific subfields linked to associative memory, not item memory.•Multi-subfield regions prominent in delayed recognition.•Age-related false recognition is due to perceptual, not conceptual, interferences.•The Chinese language offers insight into hippocampal subfields’ role in memory.
ISSN:0301-0511
1873-6246
DOI:10.1016/j.biopsycho.2023.108657