Loading…

Probability of error calculation of OFDM systems with frequency offset

Orthogonal frequency-division multiplexing (OFDM) is sensitive to the carrier frequency offset (CFO), which destroys orthogonality and causes intercarrier interference (ICI), Previously, two methods were available for the analysis of the resultant degradation in performance. Firstly, the statistical...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2001-11, Vol.49 (11), p.1884-1888
Main Authors: Sathananthan, K., Tellambura, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthogonal frequency-division multiplexing (OFDM) is sensitive to the carrier frequency offset (CFO), which destroys orthogonality and causes intercarrier interference (ICI), Previously, two methods were available for the analysis of the resultant degradation in performance. Firstly, the statistical average of the ICI could be used as a performance measure. Secondly, the bit error rate (BER) caused by CFO could be approximated by assuming the ICI to be Gaussian. However, a more precise analysis of the performance (i.e., BER or SER) degradation is desirable. In this letter, we propose a precise numerical technique for calculating the effect of the CFO on the BER or symbol error in an OFDM system. The subcarriers can be modulated with binary phase shift keying (BPSK), quaternary phase shift keying (QPSK), or 16-ary quadrature amplitude modulation (16-QAM), used in many OFDM applications. The BPSK case is solved using a series due to Beaulieu (1990). For the QPSK and 16-QAM cases, we use an infinite series expression for the error function in order to express the average probability of error in terms of the two-dimensional characteristic function of the ICI.
ISSN:0090-6778
1558-0857
DOI:10.1109/26.966051