Loading…
Performance evaluation of a differential pressure cell model
This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identificatio...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 1998-10, Vol.47 (5), p.1271-1276 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3 |
---|---|
cites | |
container_end_page | 1276 |
container_issue | 5 |
container_start_page | 1271 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 47 |
creator | McGlone, P. McGhee, J. Henderson, I.A. |
description | This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response. |
doi_str_mv | 10.1109/19.746596 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28505378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>746596</ieee_id><sourcerecordid>28505378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3</originalsourceid><addsrcrecordid>eNo90DtLBDEUBeAgCq6PwtYqlWAx600mjwnYyOILFrTQOmSTGxiZmazJjOC_d5dZrE5xPi6XQ8gVgyVjYO6YWWqhpFFHZMGk1JVRih-TBQBrKiOkOiVnpXwBgFZCL8j9O-aYcu8GjxR_XDe5sU0DTZE6GtoYMeMwtq6j24ylTBmpx66jfQrYXZCT6LqCl4c8J59Pjx-rl2r99vy6elhXnms9Vlo4gFqojQhSblQIjWDQBI7G1xFDLaTTApRz3KmIUXgumI8MjeKNBh3rc3Iz393m9D1hGW3flv0bbsA0FcsbCbLWzQ7eztDnVErGaLe57V3-tQzsfh_LjJ332dnr2baI-O8O5R9q-1_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28505378</pqid></control><display><type>article</type><title>Performance evaluation of a differential pressure cell model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>McGlone, P. ; McGhee, J. ; Henderson, I.A.</creator><creatorcontrib>McGlone, P. ; McGhee, J. ; Henderson, I.A.</creatorcontrib><description>This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/19.746596</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bellows ; Circuit testing ; Instruments ; Mathematical model ; Optical coupling ; Polynomials ; Pressure measurement ; Relays ; System identification ; System testing</subject><ispartof>IEEE transactions on instrumentation and measurement, 1998-10, Vol.47 (5), p.1271-1276</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/746596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>McGlone, P.</creatorcontrib><creatorcontrib>McGhee, J.</creatorcontrib><creatorcontrib>Henderson, I.A.</creatorcontrib><title>Performance evaluation of a differential pressure cell model</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.</description><subject>Bellows</subject><subject>Circuit testing</subject><subject>Instruments</subject><subject>Mathematical model</subject><subject>Optical coupling</subject><subject>Polynomials</subject><subject>Pressure measurement</subject><subject>Relays</subject><subject>System identification</subject><subject>System testing</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo90DtLBDEUBeAgCq6PwtYqlWAx600mjwnYyOILFrTQOmSTGxiZmazJjOC_d5dZrE5xPi6XQ8gVgyVjYO6YWWqhpFFHZMGk1JVRih-TBQBrKiOkOiVnpXwBgFZCL8j9O-aYcu8GjxR_XDe5sU0DTZE6GtoYMeMwtq6j24ylTBmpx66jfQrYXZCT6LqCl4c8J59Pjx-rl2r99vy6elhXnms9Vlo4gFqojQhSblQIjWDQBI7G1xFDLaTTApRz3KmIUXgumI8MjeKNBh3rc3Iz393m9D1hGW3flv0bbsA0FcsbCbLWzQ7eztDnVErGaLe57V3-tQzsfh_LjJ332dnr2baI-O8O5R9q-1_L</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>McGlone, P.</creator><creator>McGhee, J.</creator><creator>Henderson, I.A.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19981001</creationdate><title>Performance evaluation of a differential pressure cell model</title><author>McGlone, P. ; McGhee, J. ; Henderson, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bellows</topic><topic>Circuit testing</topic><topic>Instruments</topic><topic>Mathematical model</topic><topic>Optical coupling</topic><topic>Polynomials</topic><topic>Pressure measurement</topic><topic>Relays</topic><topic>System identification</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGlone, P.</creatorcontrib><creatorcontrib>McGhee, J.</creatorcontrib><creatorcontrib>Henderson, I.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGlone, P.</au><au>McGhee, J.</au><au>Henderson, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of a differential pressure cell model</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>47</volume><issue>5</issue><spage>1271</spage><epage>1276</epage><pages>1271-1276</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.</abstract><pub>IEEE</pub><doi>10.1109/19.746596</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 1998-10, Vol.47 (5), p.1271-1276 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_miscellaneous_28505378 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Bellows Circuit testing Instruments Mathematical model Optical coupling Polynomials Pressure measurement Relays System identification System testing |
title | Performance evaluation of a differential pressure cell model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20a%20differential%20pressure%20cell%20model&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=McGlone,%20P.&rft.date=1998-10-01&rft.volume=47&rft.issue=5&rft.spage=1271&rft.epage=1276&rft.pages=1271-1276&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/19.746596&rft_dat=%3Cproquest_ieee_%3E28505378%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28505378&rft_id=info:pmid/&rft_ieee_id=746596&rfr_iscdi=true |