Loading…

Performance evaluation of a differential pressure cell model

This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identificatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 1998-10, Vol.47 (5), p.1271-1276
Main Authors: McGlone, P., McGhee, J., Henderson, I.A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3
cites
container_end_page 1276
container_issue 5
container_start_page 1271
container_title IEEE transactions on instrumentation and measurement
container_volume 47
creator McGlone, P.
McGhee, J.
Henderson, I.A.
description This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.
doi_str_mv 10.1109/19.746596
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28505378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>746596</ieee_id><sourcerecordid>28505378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3</originalsourceid><addsrcrecordid>eNo90DtLBDEUBeAgCq6PwtYqlWAx600mjwnYyOILFrTQOmSTGxiZmazJjOC_d5dZrE5xPi6XQ8gVgyVjYO6YWWqhpFFHZMGk1JVRih-TBQBrKiOkOiVnpXwBgFZCL8j9O-aYcu8GjxR_XDe5sU0DTZE6GtoYMeMwtq6j24ylTBmpx66jfQrYXZCT6LqCl4c8J59Pjx-rl2r99vy6elhXnms9Vlo4gFqojQhSblQIjWDQBI7G1xFDLaTTApRz3KmIUXgumI8MjeKNBh3rc3Iz393m9D1hGW3flv0bbsA0FcsbCbLWzQ7eztDnVErGaLe57V3-tQzsfh_LjJ332dnr2baI-O8O5R9q-1_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28505378</pqid></control><display><type>article</type><title>Performance evaluation of a differential pressure cell model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>McGlone, P. ; McGhee, J. ; Henderson, I.A.</creator><creatorcontrib>McGlone, P. ; McGhee, J. ; Henderson, I.A.</creatorcontrib><description>This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/19.746596</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bellows ; Circuit testing ; Instruments ; Mathematical model ; Optical coupling ; Polynomials ; Pressure measurement ; Relays ; System identification ; System testing</subject><ispartof>IEEE transactions on instrumentation and measurement, 1998-10, Vol.47 (5), p.1271-1276</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/746596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>McGlone, P.</creatorcontrib><creatorcontrib>McGhee, J.</creatorcontrib><creatorcontrib>Henderson, I.A.</creatorcontrib><title>Performance evaluation of a differential pressure cell model</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.</description><subject>Bellows</subject><subject>Circuit testing</subject><subject>Instruments</subject><subject>Mathematical model</subject><subject>Optical coupling</subject><subject>Polynomials</subject><subject>Pressure measurement</subject><subject>Relays</subject><subject>System identification</subject><subject>System testing</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo90DtLBDEUBeAgCq6PwtYqlWAx600mjwnYyOILFrTQOmSTGxiZmazJjOC_d5dZrE5xPi6XQ8gVgyVjYO6YWWqhpFFHZMGk1JVRih-TBQBrKiOkOiVnpXwBgFZCL8j9O-aYcu8GjxR_XDe5sU0DTZE6GtoYMeMwtq6j24ylTBmpx66jfQrYXZCT6LqCl4c8J59Pjx-rl2r99vy6elhXnms9Vlo4gFqojQhSblQIjWDQBI7G1xFDLaTTApRz3KmIUXgumI8MjeKNBh3rc3Iz393m9D1hGW3flv0bbsA0FcsbCbLWzQ7eztDnVErGaLe57V3-tQzsfh_LjJ332dnr2baI-O8O5R9q-1_L</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>McGlone, P.</creator><creator>McGhee, J.</creator><creator>Henderson, I.A.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19981001</creationdate><title>Performance evaluation of a differential pressure cell model</title><author>McGlone, P. ; McGhee, J. ; Henderson, I.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bellows</topic><topic>Circuit testing</topic><topic>Instruments</topic><topic>Mathematical model</topic><topic>Optical coupling</topic><topic>Polynomials</topic><topic>Pressure measurement</topic><topic>Relays</topic><topic>System identification</topic><topic>System testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGlone, P.</creatorcontrib><creatorcontrib>McGhee, J.</creatorcontrib><creatorcontrib>Henderson, I.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGlone, P.</au><au>McGhee, J.</au><au>Henderson, I.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of a differential pressure cell model</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>47</volume><issue>5</issue><spage>1271</spage><epage>1276</epage><pages>1271-1276</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper describes the development of a mathematical model of a differential pressure cell and its application in MATLAB. The model is also examined in SIMULINK, for the purposes of comparison of the model with the real world. Furthermore, we also describe the application of a system identification method using a multifrequency binary test signal, for comparison with the mathematical model. The method is applied to a pneumatic differential pressure cell. The exploration of the mathematical model shows that while the majority of the subsystems are nonlinear, they can adequately be approximated by Taylor polynomials. This facilitates the modeling of the subsystem elements as linear agents. The identification results show that the cell, composed of three main components-the diaphragm, pilot relay flapper/nozzle, and the feedback bellows-has an overall first-order linear response.</abstract><pub>IEEE</pub><doi>10.1109/19.746596</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 1998-10, Vol.47 (5), p.1271-1276
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_miscellaneous_28505378
source IEEE Electronic Library (IEL) Journals
subjects Bellows
Circuit testing
Instruments
Mathematical model
Optical coupling
Polynomials
Pressure measurement
Relays
System identification
System testing
title Performance evaluation of a differential pressure cell model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20a%20differential%20pressure%20cell%20model&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=McGlone,%20P.&rft.date=1998-10-01&rft.volume=47&rft.issue=5&rft.spage=1271&rft.epage=1276&rft.pages=1271-1276&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/19.746596&rft_dat=%3Cproquest_ieee_%3E28505378%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-74a00346b4d55b6dd84108d2e9c3fed345a7406aa2a6fef4c241cf1e9628707f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28505378&rft_id=info:pmid/&rft_ieee_id=746596&rfr_iscdi=true