Loading…
Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination
The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surfa...
Saved in:
Published in: | Physica Status Solidi (b) 2005-04, Vol.242 (5), p.971-982 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653 |
---|---|
cites | cdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653 |
container_end_page | 982 |
container_issue | 5 |
container_start_page | 971 |
container_title | Physica Status Solidi (b) |
container_volume | 242 |
creator | Villegas-Lelovsky, L. Gonzalez de la Cruz, G. Volovichev, I. N. |
description | The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200402119 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28506044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28506044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</originalsourceid><addsrcrecordid>eNqFkEtv1DAUhS0EEkPLlrU3sMvgR-zES6jKAOoDqUCXluNczxgSO7UztPML-Nt4mKqw68pH9nfOvT4IvaJkSQlhb6ecuyUjpCaMUvUELahgtOJK0KdoQXhDKqoa9hy9yPkHIaShnC7Q71PnwM44OgxDESmGatrEEAOGAGm9w3BnNyasAZereQNpNAO-Nb8ATylOZm1mXx58wBlGb2Pot3aOKeMis-8h-bDG1qTkIeHeO7fNe96EHiewcex8-JtwjJ45M2R4eX8eoW8fTr-efKzOLlefTt6dVZa3rapYLUAq3lDoWCOkNL2QhjJHwFnDuoZT19e0Y9C3rFU1MCVc26sWpGg4l4IfoTeH3LL9zRbyrEefLQyDCRC3WbNWEEnquoDLA2hTzDmB01Pyo0k7TYne9633feuHvovh9X2yydYMLplgff7nkrJ8gPPCqQN36wfYPZKqv1xdvf9_RnXw-jzD3YPXpJ9aNrwR-vpipT_z7-erdnWtL_gfQTCkKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28506044</pqid></control><display><type>article</type><title>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</title><source>Wiley</source><creator>Villegas-Lelovsky, L. ; Gonzalez de la Cruz, G. ; Volovichev, I. N.</creator><creatorcontrib>Villegas-Lelovsky, L. ; Gonzalez de la Cruz, G. ; Volovichev, I. N.</creatorcontrib><description>The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200402119</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>66.70.+f ; 72.20.Jv ; 82.80.Kq ; Exact sciences and technology ; Physics</subject><ispartof>Physica Status Solidi (b), 2005-04, Vol.242 (5), p.971-982</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</citedby><cites>FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16688933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Villegas-Lelovsky, L.</creatorcontrib><creatorcontrib>Gonzalez de la Cruz, G.</creatorcontrib><creatorcontrib>Volovichev, I. N.</creatorcontrib><title>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>66.70.+f</subject><subject>72.20.Jv</subject><subject>82.80.Kq</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAUhS0EEkPLlrU3sMvgR-zES6jKAOoDqUCXluNczxgSO7UztPML-Nt4mKqw68pH9nfOvT4IvaJkSQlhb6ecuyUjpCaMUvUELahgtOJK0KdoQXhDKqoa9hy9yPkHIaShnC7Q71PnwM44OgxDESmGatrEEAOGAGm9w3BnNyasAZereQNpNAO-Nb8ATylOZm1mXx58wBlGb2Pot3aOKeMis-8h-bDG1qTkIeHeO7fNe96EHiewcex8-JtwjJ45M2R4eX8eoW8fTr-efKzOLlefTt6dVZa3rapYLUAq3lDoWCOkNL2QhjJHwFnDuoZT19e0Y9C3rFU1MCVc26sWpGg4l4IfoTeH3LL9zRbyrEefLQyDCRC3WbNWEEnquoDLA2hTzDmB01Pyo0k7TYne9633feuHvovh9X2yydYMLplgff7nkrJ8gPPCqQN36wfYPZKqv1xdvf9_RnXw-jzD3YPXpJ9aNrwR-vpipT_z7-erdnWtL_gfQTCkKA</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Villegas-Lelovsky, L.</creator><creator>Gonzalez de la Cruz, G.</creator><creator>Volovichev, I. N.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200504</creationdate><title>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</title><author>Villegas-Lelovsky, L. ; Gonzalez de la Cruz, G. ; Volovichev, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>66.70.+f</topic><topic>72.20.Jv</topic><topic>82.80.Kq</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villegas-Lelovsky, L.</creatorcontrib><creatorcontrib>Gonzalez de la Cruz, G.</creatorcontrib><creatorcontrib>Volovichev, I. N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villegas-Lelovsky, L.</au><au>Gonzalez de la Cruz, G.</au><au>Volovichev, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2005-04</date><risdate>2005</risdate><volume>242</volume><issue>5</issue><spage>971</spage><epage>982</epage><pages>971-982</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200402119</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2005-04, Vol.242 (5), p.971-982 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_28506044 |
source | Wiley |
subjects | 66.70.+f 72.20.Jv 82.80.Kq Exact sciences and technology Physics |
title | Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20electron-phonon%20energy%20exchange%20on%20thermal%20wave%20propagation%20in%20semiconductors%20considering%20carrier%20diffusion%20and%20recombination&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Villegas-Lelovsky,%20L.&rft.date=2005-04&rft.volume=242&rft.issue=5&rft.spage=971&rft.epage=982&rft.pages=971-982&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200402119&rft_dat=%3Cproquest_cross%3E28506044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28506044&rft_id=info:pmid/&rfr_iscdi=true |