Loading…

Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination

The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surfa...

Full description

Saved in:
Bibliographic Details
Published in:Physica Status Solidi (b) 2005-04, Vol.242 (5), p.971-982
Main Authors: Villegas-Lelovsky, L., Gonzalez de la Cruz, G., Volovichev, I. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653
cites cdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653
container_end_page 982
container_issue 5
container_start_page 971
container_title Physica Status Solidi (b)
container_volume 242
creator Villegas-Lelovsky, L.
Gonzalez de la Cruz, G.
Volovichev, I. N.
description The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200402119
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28506044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28506044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</originalsourceid><addsrcrecordid>eNqFkEtv1DAUhS0EEkPLlrU3sMvgR-zES6jKAOoDqUCXluNczxgSO7UztPML-Nt4mKqw68pH9nfOvT4IvaJkSQlhb6ecuyUjpCaMUvUELahgtOJK0KdoQXhDKqoa9hy9yPkHIaShnC7Q71PnwM44OgxDESmGatrEEAOGAGm9w3BnNyasAZereQNpNAO-Nb8ATylOZm1mXx58wBlGb2Pot3aOKeMis-8h-bDG1qTkIeHeO7fNe96EHiewcex8-JtwjJ45M2R4eX8eoW8fTr-efKzOLlefTt6dVZa3rapYLUAq3lDoWCOkNL2QhjJHwFnDuoZT19e0Y9C3rFU1MCVc26sWpGg4l4IfoTeH3LL9zRbyrEefLQyDCRC3WbNWEEnquoDLA2hTzDmB01Pyo0k7TYne9633feuHvovh9X2yydYMLplgff7nkrJ8gPPCqQN36wfYPZKqv1xdvf9_RnXw-jzD3YPXpJ9aNrwR-vpipT_z7-erdnWtL_gfQTCkKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28506044</pqid></control><display><type>article</type><title>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</title><source>Wiley</source><creator>Villegas-Lelovsky, L. ; Gonzalez de la Cruz, G. ; Volovichev, I. N.</creator><creatorcontrib>Villegas-Lelovsky, L. ; Gonzalez de la Cruz, G. ; Volovichev, I. N.</creatorcontrib><description>The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200402119</identifier><identifier>CODEN: PSSBBD</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>66.70.+f ; 72.20.Jv ; 82.80.Kq ; Exact sciences and technology ; Physics</subject><ispartof>Physica Status Solidi (b), 2005-04, Vol.242 (5), p.971-982</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</citedby><cites>FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16688933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Villegas-Lelovsky, L.</creatorcontrib><creatorcontrib>Gonzalez de la Cruz, G.</creatorcontrib><creatorcontrib>Volovichev, I. N.</creatorcontrib><title>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>66.70.+f</subject><subject>72.20.Jv</subject><subject>82.80.Kq</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAUhS0EEkPLlrU3sMvgR-zES6jKAOoDqUCXluNczxgSO7UztPML-Nt4mKqw68pH9nfOvT4IvaJkSQlhb6ecuyUjpCaMUvUELahgtOJK0KdoQXhDKqoa9hy9yPkHIaShnC7Q71PnwM44OgxDESmGatrEEAOGAGm9w3BnNyasAZereQNpNAO-Nb8ATylOZm1mXx58wBlGb2Pot3aOKeMis-8h-bDG1qTkIeHeO7fNe96EHiewcex8-JtwjJ45M2R4eX8eoW8fTr-efKzOLlefTt6dVZa3rapYLUAq3lDoWCOkNL2QhjJHwFnDuoZT19e0Y9C3rFU1MCVc26sWpGg4l4IfoTeH3LL9zRbyrEefLQyDCRC3WbNWEEnquoDLA2hTzDmB01Pyo0k7TYne9633feuHvovh9X2yydYMLplgff7nkrJ8gPPCqQN36wfYPZKqv1xdvf9_RnXw-jzD3YPXpJ9aNrwR-vpipT_z7-erdnWtL_gfQTCkKA</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Villegas-Lelovsky, L.</creator><creator>Gonzalez de la Cruz, G.</creator><creator>Volovichev, I. N.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200504</creationdate><title>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</title><author>Villegas-Lelovsky, L. ; Gonzalez de la Cruz, G. ; Volovichev, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>66.70.+f</topic><topic>72.20.Jv</topic><topic>82.80.Kq</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villegas-Lelovsky, L.</creatorcontrib><creatorcontrib>Gonzalez de la Cruz, G.</creatorcontrib><creatorcontrib>Volovichev, I. N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villegas-Lelovsky, L.</au><au>Gonzalez de la Cruz, G.</au><au>Volovichev, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2005-04</date><risdate>2005</risdate><volume>242</volume><issue>5</issue><spage>971</spage><epage>982</epage><pages>971-982</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><coden>PSSBBD</coden><abstract>The electron, hole, and phonon temperatures are calculated in semiconductors by taking into account the finite carrier diffusion and nonradiative recombination time in the sample. We assume that the energy of the modulated excitation radiation is greater than the energy gap and absorbed at the surface of the semiconductor, therefore, a source of heat and carrier generation at the surface of the sample are time dependent and must be considered in the photothermal theory. Under this situation, the coupled one‐dimensional heat transport (for each quasiparticle system) and carrier diffusion equations in the strong hole–phonon energy interaction approximation and charge quasineutrality condition are solved. Since the nonequilibrium carrier concentration depends sensitively on the electron and phonon fluctuation temperature, the heat power density generated in the sample due to the recombination of the electron–hole pair will be greatly influenced by the inhomogeneous quasiparticle temperature distributions. This latter effect comes through the recombination rate of carriers and it will be considered in the photothermal signal. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200402119</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2005-04, Vol.242 (5), p.971-982
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_28506044
source Wiley
subjects 66.70.+f
72.20.Jv
82.80.Kq
Exact sciences and technology
Physics
title Effect of electron-phonon energy exchange on thermal wave propagation in semiconductors considering carrier diffusion and recombination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20electron-phonon%20energy%20exchange%20on%20thermal%20wave%20propagation%20in%20semiconductors%20considering%20carrier%20diffusion%20and%20recombination&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Villegas-Lelovsky,%20L.&rft.date=2005-04&rft.volume=242&rft.issue=5&rft.spage=971&rft.epage=982&rft.pages=971-982&rft.issn=0370-1972&rft.eissn=1521-3951&rft.coden=PSSBBD&rft_id=info:doi/10.1002/pssb.200402119&rft_dat=%3Cproquest_cross%3E28506044%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3889-245e69371eb27566ad56a12f0efca2b731fd41b2ed82894e295f8d98e65733653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28506044&rft_id=info:pmid/&rfr_iscdi=true