Loading…

A parametric formulation of the generalized spectral subtraction method

In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on speech and audio processing 1998-07, Vol.6 (4), p.328-337
Main Authors: Boh Lim Sim, Yit Chow Tong, Chang, J.S., Chin Tuan Tan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053
cites cdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053
container_end_page 337
container_issue 4
container_start_page 328
container_title IEEE transactions on speech and audio processing
container_volume 6
creator Boh Lim Sim
Yit Chow Tong
Chang, J.S.
Chin Tuan Tan
description In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.
doi_str_mv 10.1109/89.701361
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28508524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>701361</ieee_id><sourcerecordid>28508524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</originalsourceid><addsrcrecordid>eNo9kDtPw0AQhE8IJEKgoKVygZAoHO79KKMoBKRINFCfLuc9YuQXd3YBvx4HR9lmdrXfTDEI3RK8IASbJ20WChMmyRmaESF0Tplg5-OOJculVPISXaX0hTHWRPEZ2iyzzkVXQx9Ln4U21kPl-rJtsjZk_R6yT2gguqr8hSJLHfh-PLI07Eb1_9xo3bfFNboIrkpwc9Q5-nhev69e8u3b5nW13OaeKdrninNDcHBUGWpk4ajecRoAuBpHywA4-AIbulNG4cJ4wYEDNbRgInCNBZujhym3i-33AKm3dZk8VJVroB2SpVpgLSgfwccJ9LFNKUKwXSxrF38swfZQldXGTlWN7P0x1CXvqhBd48t0MlBmtJKHyLsJKwHg9D1m_AGGAW__</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28508524</pqid></control><display><type>article</type><title>A parametric formulation of the generalized spectral subtraction method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Boh Lim Sim ; Yit Chow Tong ; Chang, J.S. ; Chin Tuan Tan</creator><creatorcontrib>Boh Lim Sim ; Yit Chow Tong ; Chang, J.S. ; Chin Tuan Tan</creatorcontrib><description>In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.</description><identifier>ISSN: 1063-6676</identifier><identifier>EISSN: 1558-2353</identifier><identifier>DOI: 10.1109/89.701361</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic noise ; Amplitude estimation ; Applied sciences ; Automatic speech recognition ; Constraint optimization ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; Noise level ; Noise reduction ; Signal processing ; Speech enhancement ; Speech processing ; Telecommunications and information theory ; Testing</subject><ispartof>IEEE transactions on speech and audio processing, 1998-07, Vol.6 (4), p.328-337</ispartof><rights>1998 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</citedby><cites>FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/701361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2398764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boh Lim Sim</creatorcontrib><creatorcontrib>Yit Chow Tong</creatorcontrib><creatorcontrib>Chang, J.S.</creatorcontrib><creatorcontrib>Chin Tuan Tan</creatorcontrib><title>A parametric formulation of the generalized spectral subtraction method</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.</description><subject>Acoustic noise</subject><subject>Amplitude estimation</subject><subject>Applied sciences</subject><subject>Automatic speech recognition</subject><subject>Constraint optimization</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>Noise level</subject><subject>Noise reduction</subject><subject>Signal processing</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><issn>1063-6676</issn><issn>1558-2353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPw0AQhE8IJEKgoKVygZAoHO79KKMoBKRINFCfLuc9YuQXd3YBvx4HR9lmdrXfTDEI3RK8IASbJ20WChMmyRmaESF0Tplg5-OOJculVPISXaX0hTHWRPEZ2iyzzkVXQx9Ln4U21kPl-rJtsjZk_R6yT2gguqr8hSJLHfh-PLI07Eb1_9xo3bfFNboIrkpwc9Q5-nhev69e8u3b5nW13OaeKdrninNDcHBUGWpk4ajecRoAuBpHywA4-AIbulNG4cJ4wYEDNbRgInCNBZujhym3i-33AKm3dZk8VJVroB2SpVpgLSgfwccJ9LFNKUKwXSxrF38swfZQldXGTlWN7P0x1CXvqhBd48t0MlBmtJKHyLsJKwHg9D1m_AGGAW__</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Boh Lim Sim</creator><creator>Yit Chow Tong</creator><creator>Chang, J.S.</creator><creator>Chin Tuan Tan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980701</creationdate><title>A parametric formulation of the generalized spectral subtraction method</title><author>Boh Lim Sim ; Yit Chow Tong ; Chang, J.S. ; Chin Tuan Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acoustic noise</topic><topic>Amplitude estimation</topic><topic>Applied sciences</topic><topic>Automatic speech recognition</topic><topic>Constraint optimization</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>Noise level</topic><topic>Noise reduction</topic><topic>Signal processing</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Boh Lim Sim</creatorcontrib><creatorcontrib>Yit Chow Tong</creatorcontrib><creatorcontrib>Chang, J.S.</creatorcontrib><creatorcontrib>Chin Tuan Tan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boh Lim Sim</au><au>Yit Chow Tong</au><au>Chang, J.S.</au><au>Chin Tuan Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parametric formulation of the generalized spectral subtraction method</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>1998-07-01</date><risdate>1998</risdate><volume>6</volume><issue>4</issue><spage>328</spage><epage>337</epage><pages>328-337</pages><issn>1063-6676</issn><eissn>1558-2353</eissn><coden>IESPEJ</coden><abstract>In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/89.701361</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6676
ispartof IEEE transactions on speech and audio processing, 1998-07, Vol.6 (4), p.328-337
issn 1063-6676
1558-2353
language eng
recordid cdi_proquest_miscellaneous_28508524
source IEEE Electronic Library (IEL) Journals
subjects Acoustic noise
Amplitude estimation
Applied sciences
Automatic speech recognition
Constraint optimization
Exact sciences and technology
Gaussian noise
Information, signal and communications theory
Noise level
Noise reduction
Signal processing
Speech enhancement
Speech processing
Telecommunications and information theory
Testing
title A parametric formulation of the generalized spectral subtraction method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parametric%20formulation%20of%20the%20generalized%20spectral%20subtraction%20method&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Boh%20Lim%20Sim&rft.date=1998-07-01&rft.volume=6&rft.issue=4&rft.spage=328&rft.epage=337&rft.pages=328-337&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/89.701361&rft_dat=%3Cproquest_cross%3E28508524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28508524&rft_id=info:pmid/&rft_ieee_id=701361&rfr_iscdi=true