Loading…
A parametric formulation of the generalized spectral subtraction method
In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computati...
Saved in:
Published in: | IEEE transactions on speech and audio processing 1998-07, Vol.6 (4), p.328-337 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053 |
container_end_page | 337 |
container_issue | 4 |
container_start_page | 328 |
container_title | IEEE transactions on speech and audio processing |
container_volume | 6 |
creator | Boh Lim Sim Yit Chow Tong Chang, J.S. Chin Tuan Tan |
description | In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results. |
doi_str_mv | 10.1109/89.701361 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28508524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>701361</ieee_id><sourcerecordid>28508524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</originalsourceid><addsrcrecordid>eNo9kDtPw0AQhE8IJEKgoKVygZAoHO79KKMoBKRINFCfLuc9YuQXd3YBvx4HR9lmdrXfTDEI3RK8IASbJ20WChMmyRmaESF0Tplg5-OOJculVPISXaX0hTHWRPEZ2iyzzkVXQx9Ln4U21kPl-rJtsjZk_R6yT2gguqr8hSJLHfh-PLI07Eb1_9xo3bfFNboIrkpwc9Q5-nhev69e8u3b5nW13OaeKdrninNDcHBUGWpk4ajecRoAuBpHywA4-AIbulNG4cJ4wYEDNbRgInCNBZujhym3i-33AKm3dZk8VJVroB2SpVpgLSgfwccJ9LFNKUKwXSxrF38swfZQldXGTlWN7P0x1CXvqhBd48t0MlBmtJKHyLsJKwHg9D1m_AGGAW__</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28508524</pqid></control><display><type>article</type><title>A parametric formulation of the generalized spectral subtraction method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Boh Lim Sim ; Yit Chow Tong ; Chang, J.S. ; Chin Tuan Tan</creator><creatorcontrib>Boh Lim Sim ; Yit Chow Tong ; Chang, J.S. ; Chin Tuan Tan</creatorcontrib><description>In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.</description><identifier>ISSN: 1063-6676</identifier><identifier>EISSN: 1558-2353</identifier><identifier>DOI: 10.1109/89.701361</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic noise ; Amplitude estimation ; Applied sciences ; Automatic speech recognition ; Constraint optimization ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; Noise level ; Noise reduction ; Signal processing ; Speech enhancement ; Speech processing ; Telecommunications and information theory ; Testing</subject><ispartof>IEEE transactions on speech and audio processing, 1998-07, Vol.6 (4), p.328-337</ispartof><rights>1998 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</citedby><cites>FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/701361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2398764$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boh Lim Sim</creatorcontrib><creatorcontrib>Yit Chow Tong</creatorcontrib><creatorcontrib>Chang, J.S.</creatorcontrib><creatorcontrib>Chin Tuan Tan</creatorcontrib><title>A parametric formulation of the generalized spectral subtraction method</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.</description><subject>Acoustic noise</subject><subject>Amplitude estimation</subject><subject>Applied sciences</subject><subject>Automatic speech recognition</subject><subject>Constraint optimization</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>Noise level</subject><subject>Noise reduction</subject><subject>Signal processing</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><issn>1063-6676</issn><issn>1558-2353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPw0AQhE8IJEKgoKVygZAoHO79KKMoBKRINFCfLuc9YuQXd3YBvx4HR9lmdrXfTDEI3RK8IASbJ20WChMmyRmaESF0Tplg5-OOJculVPISXaX0hTHWRPEZ2iyzzkVXQx9Ln4U21kPl-rJtsjZk_R6yT2gguqr8hSJLHfh-PLI07Eb1_9xo3bfFNboIrkpwc9Q5-nhev69e8u3b5nW13OaeKdrninNDcHBUGWpk4ajecRoAuBpHywA4-AIbulNG4cJ4wYEDNbRgInCNBZujhym3i-33AKm3dZk8VJVroB2SpVpgLSgfwccJ9LFNKUKwXSxrF38swfZQldXGTlWN7P0x1CXvqhBd48t0MlBmtJKHyLsJKwHg9D1m_AGGAW__</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Boh Lim Sim</creator><creator>Yit Chow Tong</creator><creator>Chang, J.S.</creator><creator>Chin Tuan Tan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980701</creationdate><title>A parametric formulation of the generalized spectral subtraction method</title><author>Boh Lim Sim ; Yit Chow Tong ; Chang, J.S. ; Chin Tuan Tan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acoustic noise</topic><topic>Amplitude estimation</topic><topic>Applied sciences</topic><topic>Automatic speech recognition</topic><topic>Constraint optimization</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>Noise level</topic><topic>Noise reduction</topic><topic>Signal processing</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Boh Lim Sim</creatorcontrib><creatorcontrib>Yit Chow Tong</creatorcontrib><creatorcontrib>Chang, J.S.</creatorcontrib><creatorcontrib>Chin Tuan Tan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boh Lim Sim</au><au>Yit Chow Tong</au><au>Chang, J.S.</au><au>Chin Tuan Tan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parametric formulation of the generalized spectral subtraction method</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>1998-07-01</date><risdate>1998</risdate><volume>6</volume><issue>4</issue><spage>328</spage><epage>337</epage><pages>328-337</pages><issn>1063-6676</issn><eissn>1558-2353</eissn><coden>IESPEJ</coden><abstract>In this paper, two short-time spectral amplitude estimators of the speech signal are derived based on a parametric formulation of the original generalized spectral subtraction method. The objective is to improve the noise suppression performance of the original method while maintaining its computational simplicity. The proposed parametric formulation describes the original method and several of its modifications. Based on the formulation, the speech spectral amplitude estimator is derived and optimized by minimizing the mean-square error (MSE) of the speech spectrum. With a constraint imposed on the parameters inherent in the formulation, a second estimator is also derived and optimized. The two estimators are different from those derived in most modified spectral subtraction methods, which are predominantly nonstatistical. When tested under stationary white Gaussian noise and semistationary Jeep noise, they showed improved noise suppression results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/89.701361</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6676 |
ispartof | IEEE transactions on speech and audio processing, 1998-07, Vol.6 (4), p.328-337 |
issn | 1063-6676 1558-2353 |
language | eng |
recordid | cdi_proquest_miscellaneous_28508524 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acoustic noise Amplitude estimation Applied sciences Automatic speech recognition Constraint optimization Exact sciences and technology Gaussian noise Information, signal and communications theory Noise level Noise reduction Signal processing Speech enhancement Speech processing Telecommunications and information theory Testing |
title | A parametric formulation of the generalized spectral subtraction method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parametric%20formulation%20of%20the%20generalized%20spectral%20subtraction%20method&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Boh%20Lim%20Sim&rft.date=1998-07-01&rft.volume=6&rft.issue=4&rft.spage=328&rft.epage=337&rft.pages=328-337&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/89.701361&rft_dat=%3Cproquest_cross%3E28508524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-744910fa279296da28b42fee4777786fe0fcd092b7970d9c54e4e292d35f48053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28508524&rft_id=info:pmid/&rft_ieee_id=701361&rfr_iscdi=true |