Loading…

Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts

Photochemical deposition has been attracting increasing attention for preparing nano-catalysts due to its mild reaction conditions, simplicity, green and safe characteristics, and potential for various applications in photocatalysis, thermal catalysis, and electrocatalysis. In this review, we provid...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2023-09, Vol.15 (34), p.1399-13931
Main Authors: Chen, Guoli, Li, Rengui, Huang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photochemical deposition has been attracting increasing attention for preparing nano-catalysts due to its mild reaction conditions, simplicity, green and safe characteristics, and potential for various applications in photocatalysis, thermal catalysis, and electrocatalysis. In this review, we provide an overview of recent advances in photochemical deposition methods for fabricating heterogeneous catalysts, and summarize the factors that influence the nucleation and growth of metal nanoparticles during the photochemical process. Specifically, we focus on the various factors including surface defects, crystal facets, surface properties and the surface plasmon effect on the size, morphology and distribution control of metal and metal oxide nanoparticles on semiconductors. The control of the photogenerated charges and the triggered photochemical reactions have been proved to be significant in the photochemical deposition process. Besides, the applications of the obtained catalytic materials in thermal catalysis and electrocatalysis is highlighted, considering that many reviews have covered photocatalysis applications. We first introduce the principle of photodeposition, nucleation and growth theory, and factors affecting photodeposition. Then, we introduce photodeposition methods that can achieve "controlled" photodeposition from a strategic perspective. Finally, we summarize the fruitful results of controlled photodeposition and provide future prospects for the development of controlled photodeposition technologies and methods, as well as the deepening and expansion of applications. In this review, we emphasize methods for controlling metal and metal oxide properties through photodeposition. We highlight their use in thermal and electrocatalysis, summarize achievements and challenges, and outline future research directions.
ISSN:2040-3364
2040-3372
DOI:10.1039/d3nr02475j