Loading…

Pomegranate Polyphenol-Derived Injectable Therapeutic Hydrogels to Enhance Neuronal Regeneration

Drug delivery for the treatment of neurological disorders has long been considered complex due to difficulties in ensuring the drug targeting on a specific site of the damaged neural tissues and its prolonged release. A syringe-injectable polymeric hydrogel with mechanical moduli matching those of b...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmaceutics 2023-09, Vol.20 (9), p.4786-4795
Main Authors: Ju, Jaewon, Kim, Sung Dong, Shin, Mikyung
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug delivery for the treatment of neurological disorders has long been considered complex due to difficulties in ensuring the drug targeting on a specific site of the damaged neural tissues and its prolonged release. A syringe-injectable polymeric hydrogel with mechanical moduli matching those of brain tissues can provide a solution to deliver the drugs to the specific region through intracranial injections in a minimally invasive manner. In this study, an injectable therapeutic hydrogel with antioxidant pomegranate polyphenols, punicalagin, is reported for efficient neuronal repair. The hydrogels composed of tyramine-functionalized hyaluronic acid and collagen crosslinked by enzymatic reactions have great injectability with high shape fidelity and effectively encapsulate the polyphenol therapeutics. Furthermore, the punicalagin continuously released from the hydrogels over several days could enhance the growth and differentiation of the neurons. Our findings for efficacy of the polyphenol therapeutic-encapsulated injectable hydrogels on neuronal regeneration would be promising for designing a new type of antioxidative biomaterials in brain disorder therapy.
ISSN:1543-8384
1543-8392
DOI:10.1021/acs.molpharmaceut.3c00623