Loading…

Photospheric flux density of magnetic helicity

Several recent studies have developed the measurement of magnetic helicity flux from the time evolution of photospheric magnetograms. The total flux is computed by summing the flux density over the analyzed region. All previous analyses used the density GA (=$-2 ( \vec A\cdot {\vec u}) B_n$) which i...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2005-09, Vol.439 (3), p.1191-1203
Main Authors: Pariat, E., Démoulin, P., Berger, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03
cites cdi_FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03
container_end_page 1203
container_issue 3
container_start_page 1191
container_title Astronomy and astrophysics (Berlin)
container_volume 439
creator Pariat, E.
Démoulin, P.
Berger, M. A.
description Several recent studies have developed the measurement of magnetic helicity flux from the time evolution of photospheric magnetograms. The total flux is computed by summing the flux density over the analyzed region. All previous analyses used the density GA (=$-2 ( \vec A\cdot {\vec u}) B_n$) which involves the vector potential $ \vec A$ of the magnetic field. In all the studied active regions, the density GA has strong polarities of both signs with comparable magnitude. Unfortunately, the density GA can exhibit spurious signals which do not provide a true helicity flux density. The main objective of this study is to resolve the above problem by defining the flux of magnetic helicity per unit surface. In a first step, we define a new density, $G_{\theta}$, which reduces the fake polarities by more than an order of magnitude in most cases (using the same photospheric data as GA). In a second step, we show that the coronal linkage needs to be provided in order to define the true helicity flux density. It represents how all the elementary flux tubes move relatively to a given elementary flux tube, and the helicity flux density is defined per elementary flux tube. From this we define a helicity flux per unit surface, $G_{\Phi}$. We show that it is a field-weighted average of $G_{\theta}$ at both photospheric feet of coronal connections. We compare these three densities (GA, $G_{\theta}$, $G_{\Phi}$) using theoretical examples representing the main cases found in magnetograms (moving magnetic polarities, separating polarities, one polarity rotating around another one and emergence of a twisted flux tube). We conclude that $G_{\theta}$ is a much better proxy of the magnetic helicity flux density than GA because most fake polarities are removed. Indeed $G_{\theta}$ gives results close to $G_{\Phi}$ and should be used to monitor the photospheric injection of helicity (when coronal linkages are not well known). These results are applicable to the results of any method determining the photospheric velocities. They can provide separately the flux density coming from shearing and advection motions if plasma motions are known.
doi_str_mv 10.1051/0004-6361:20052663
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28511490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17395142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwA6yygV3K-DF2wg61FJAq8VaXlmM7NJA2JU6l9u9JVChLWI1m7rmzOIScUhhQQHoBACKWXNJLBoBMSr5HelRwFoMScp_0dsAhOQrhvV0ZTXiPDB5mVVOF5czXhY3ycrWOnF-EotlEVR7NzdvCN20w82Vh2-MxOchNGfzJ9-yT1_H1y_A2ntzf3A2vJrEVyJrYWJdRJ6TJE2Gs4sxh6pBZmjiKGRrkUvnEgHDKKOkQMaWZTwVkWZ4mDnifnG__Luvqc-VDo-dFsL4szcJXq6BZgpSK9D8gSMbo3yBVPEUqWAuyLWjrKoTa53pZF3NTbzQF3cnWnUvdudQ_stvS2fd3E6wp89osbBF-mwoQGHZcvOWK0Pj1Ljf1h5aKK9QJTPWIjUfPT48jPeVf0CiMQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17395142</pqid></control><display><type>article</type><title>Photospheric flux density of magnetic helicity</title><source>EZB Electronic Journals Library</source><creator>Pariat, E. ; Démoulin, P. ; Berger, M. A.</creator><creatorcontrib>Pariat, E. ; Démoulin, P. ; Berger, M. A.</creatorcontrib><description>Several recent studies have developed the measurement of magnetic helicity flux from the time evolution of photospheric magnetograms. The total flux is computed by summing the flux density over the analyzed region. All previous analyses used the density GA (=$-2 ( \vec A\cdot {\vec u}) B_n$) which involves the vector potential $ \vec A$ of the magnetic field. In all the studied active regions, the density GA has strong polarities of both signs with comparable magnitude. Unfortunately, the density GA can exhibit spurious signals which do not provide a true helicity flux density. The main objective of this study is to resolve the above problem by defining the flux of magnetic helicity per unit surface. In a first step, we define a new density, $G_{\theta}$, which reduces the fake polarities by more than an order of magnitude in most cases (using the same photospheric data as GA). In a second step, we show that the coronal linkage needs to be provided in order to define the true helicity flux density. It represents how all the elementary flux tubes move relatively to a given elementary flux tube, and the helicity flux density is defined per elementary flux tube. From this we define a helicity flux per unit surface, $G_{\Phi}$. We show that it is a field-weighted average of $G_{\theta}$ at both photospheric feet of coronal connections. We compare these three densities (GA, $G_{\theta}$, $G_{\Phi}$) using theoretical examples representing the main cases found in magnetograms (moving magnetic polarities, separating polarities, one polarity rotating around another one and emergence of a twisted flux tube). We conclude that $G_{\theta}$ is a much better proxy of the magnetic helicity flux density than GA because most fake polarities are removed. Indeed $G_{\theta}$ gives results close to $G_{\Phi}$ and should be used to monitor the photospheric injection of helicity (when coronal linkages are not well known). These results are applicable to the results of any method determining the photospheric velocities. They can provide separately the flux density coming from shearing and advection motions if plasma motions are known.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20052663</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Sun: corona ; Sun: magnetic fields ; Sun: photosphere</subject><ispartof>Astronomy and astrophysics (Berlin), 2005-09, Vol.439 (3), p.1191-1203</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03</citedby><cites>FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17050253$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pariat, E.</creatorcontrib><creatorcontrib>Démoulin, P.</creatorcontrib><creatorcontrib>Berger, M. A.</creatorcontrib><title>Photospheric flux density of magnetic helicity</title><title>Astronomy and astrophysics (Berlin)</title><description>Several recent studies have developed the measurement of magnetic helicity flux from the time evolution of photospheric magnetograms. The total flux is computed by summing the flux density over the analyzed region. All previous analyses used the density GA (=$-2 ( \vec A\cdot {\vec u}) B_n$) which involves the vector potential $ \vec A$ of the magnetic field. In all the studied active regions, the density GA has strong polarities of both signs with comparable magnitude. Unfortunately, the density GA can exhibit spurious signals which do not provide a true helicity flux density. The main objective of this study is to resolve the above problem by defining the flux of magnetic helicity per unit surface. In a first step, we define a new density, $G_{\theta}$, which reduces the fake polarities by more than an order of magnitude in most cases (using the same photospheric data as GA). In a second step, we show that the coronal linkage needs to be provided in order to define the true helicity flux density. It represents how all the elementary flux tubes move relatively to a given elementary flux tube, and the helicity flux density is defined per elementary flux tube. From this we define a helicity flux per unit surface, $G_{\Phi}$. We show that it is a field-weighted average of $G_{\theta}$ at both photospheric feet of coronal connections. We compare these three densities (GA, $G_{\theta}$, $G_{\Phi}$) using theoretical examples representing the main cases found in magnetograms (moving magnetic polarities, separating polarities, one polarity rotating around another one and emergence of a twisted flux tube). We conclude that $G_{\theta}$ is a much better proxy of the magnetic helicity flux density than GA because most fake polarities are removed. Indeed $G_{\theta}$ gives results close to $G_{\Phi}$ and should be used to monitor the photospheric injection of helicity (when coronal linkages are not well known). These results are applicable to the results of any method determining the photospheric velocities. They can provide separately the flux density coming from shearing and advection motions if plasma motions are known.</description><subject>Sun: corona</subject><subject>Sun: magnetic fields</subject><subject>Sun: photosphere</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwA6yygV3K-DF2wg61FJAq8VaXlmM7NJA2JU6l9u9JVChLWI1m7rmzOIScUhhQQHoBACKWXNJLBoBMSr5HelRwFoMScp_0dsAhOQrhvV0ZTXiPDB5mVVOF5czXhY3ycrWOnF-EotlEVR7NzdvCN20w82Vh2-MxOchNGfzJ9-yT1_H1y_A2ntzf3A2vJrEVyJrYWJdRJ6TJE2Gs4sxh6pBZmjiKGRrkUvnEgHDKKOkQMaWZTwVkWZ4mDnifnG__Luvqc-VDo-dFsL4szcJXq6BZgpSK9D8gSMbo3yBVPEUqWAuyLWjrKoTa53pZF3NTbzQF3cnWnUvdudQ_stvS2fd3E6wp89osbBF-mwoQGHZcvOWK0Pj1Ljf1h5aKK9QJTPWIjUfPT48jPeVf0CiMQg</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Pariat, E.</creator><creator>Démoulin, P.</creator><creator>Berger, M. A.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20050901</creationdate><title>Photospheric flux density of magnetic helicity</title><author>Pariat, E. ; Démoulin, P. ; Berger, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Sun: corona</topic><topic>Sun: magnetic fields</topic><topic>Sun: photosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pariat, E.</creatorcontrib><creatorcontrib>Démoulin, P.</creatorcontrib><creatorcontrib>Berger, M. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pariat, E.</au><au>Démoulin, P.</au><au>Berger, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photospheric flux density of magnetic helicity</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>439</volume><issue>3</issue><spage>1191</spage><epage>1203</epage><pages>1191-1203</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>Several recent studies have developed the measurement of magnetic helicity flux from the time evolution of photospheric magnetograms. The total flux is computed by summing the flux density over the analyzed region. All previous analyses used the density GA (=$-2 ( \vec A\cdot {\vec u}) B_n$) which involves the vector potential $ \vec A$ of the magnetic field. In all the studied active regions, the density GA has strong polarities of both signs with comparable magnitude. Unfortunately, the density GA can exhibit spurious signals which do not provide a true helicity flux density. The main objective of this study is to resolve the above problem by defining the flux of magnetic helicity per unit surface. In a first step, we define a new density, $G_{\theta}$, which reduces the fake polarities by more than an order of magnitude in most cases (using the same photospheric data as GA). In a second step, we show that the coronal linkage needs to be provided in order to define the true helicity flux density. It represents how all the elementary flux tubes move relatively to a given elementary flux tube, and the helicity flux density is defined per elementary flux tube. From this we define a helicity flux per unit surface, $G_{\Phi}$. We show that it is a field-weighted average of $G_{\theta}$ at both photospheric feet of coronal connections. We compare these three densities (GA, $G_{\theta}$, $G_{\Phi}$) using theoretical examples representing the main cases found in magnetograms (moving magnetic polarities, separating polarities, one polarity rotating around another one and emergence of a twisted flux tube). We conclude that $G_{\theta}$ is a much better proxy of the magnetic helicity flux density than GA because most fake polarities are removed. Indeed $G_{\theta}$ gives results close to $G_{\Phi}$ and should be used to monitor the photospheric injection of helicity (when coronal linkages are not well known). These results are applicable to the results of any method determining the photospheric velocities. They can provide separately the flux density coming from shearing and advection motions if plasma motions are known.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20052663</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2005-09, Vol.439 (3), p.1191-1203
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_28511490
source EZB Electronic Journals Library
subjects Sun: corona
Sun: magnetic fields
Sun: photosphere
title Photospheric flux density of magnetic helicity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photospheric%20flux%20density%20of%20magnetic%20helicity&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Pariat,%20E.&rft.date=2005-09-01&rft.volume=439&rft.issue=3&rft.spage=1191&rft.epage=1203&rft.pages=1191-1203&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20052663&rft_dat=%3Cproquest_cross%3E17395142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-acdb1d46af84ac732d59d52c18d15b5a5367e8a04d7a76d55591be940bbf98d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17395142&rft_id=info:pmid/&rfr_iscdi=true