Loading…

Application of conformational space annealing to the protein structure modeling using cryo‐EM maps

Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo‐EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax ( FastRelax ) protocol of PyRose...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry 2023-11, Vol.44 (30), p.2332-2346
Main Authors: Park, Jimin, Joung, InSuk, Joo, Keehyoung, Lee, Jooyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c250t-27939125fab31c248bc77faeb929d5f4c02e8097bc5e6f3a0c4099c544d59d4a3
container_end_page 2346
container_issue 30
container_start_page 2332
container_title Journal of computational chemistry
container_volume 44
creator Park, Jimin
Joung, InSuk
Joo, Keehyoung
Lee, Jooyoung
description Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo‐EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax ( FastRelax ) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo‐EM map and de novo protein modeling by tracing the Cryo‐EM map, was performed by CSA. In the refinement of the rigid‐fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross‐correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo‐EM structure modeling.
doi_str_mv 10.1002/jcc.27200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2851868093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871833914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-27939125fab31c248bc77faeb929d5f4c02e8097bc5e6f3a0c4099c544d59d4a3</originalsourceid><addsrcrecordid>eNpdkL9OwzAQhy0EEqUw8AaWWGBIOdtxEo9VVf5IRSwgsUXuxYZUSRxsZ-jGI_CMPAlpy8Ryp5M-_fS7j5BLBjMGwG83iDOec4AjMmGgskQV-dsxmQBTPCkyyU7JWQgbABAySyekmvd9U6OOteuosxRdZ51v97duaOg1Gqq7zuim7t5pdDR-GNp7F03d0RD9gHHwhrauMntiCLuJfut-vr6XT7TVfTgnJ1Y3wVz87Sl5vVu-LB6S1fP942K-SpBLiAnPlVCMS6vXgiFPizXmudVmrbiqpE0RuClA5WuUJrNCA6agFMo0raSqUi2m5PqQO_b7HEyIZVsHNE2jO-OGUPJCsiIbI8SIXv1DN27w48s7KmeFGJukI3VzoNC7ELyxZe_rVvttyaDc-S5H3-Xet_gFjTl0nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871833914</pqid></control><display><type>article</type><title>Application of conformational space annealing to the protein structure modeling using cryo‐EM maps</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Park, Jimin ; Joung, InSuk ; Joo, Keehyoung ; Lee, Jooyoung</creator><creatorcontrib>Park, Jimin ; Joung, InSuk ; Joo, Keehyoung ; Lee, Jooyoung</creatorcontrib><description>Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo‐EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax ( FastRelax ) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo‐EM map and de novo protein modeling by tracing the Cryo‐EM map, was performed by CSA. In the refinement of the rigid‐fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross‐correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo‐EM structure modeling.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27200</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Correlation coefficients ; Global optimization ; Modelling ; Proteins</subject><ispartof>Journal of computational chemistry, 2023-11, Vol.44 (30), p.2332-2346</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-27939125fab31c248bc77faeb929d5f4c02e8097bc5e6f3a0c4099c544d59d4a3</cites><orcidid>0000-0003-2654-712X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Jimin</creatorcontrib><creatorcontrib>Joung, InSuk</creatorcontrib><creatorcontrib>Joo, Keehyoung</creatorcontrib><creatorcontrib>Lee, Jooyoung</creatorcontrib><title>Application of conformational space annealing to the protein structure modeling using cryo‐EM maps</title><title>Journal of computational chemistry</title><description>Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo‐EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax ( FastRelax ) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo‐EM map and de novo protein modeling by tracing the Cryo‐EM map, was performed by CSA. In the refinement of the rigid‐fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross‐correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo‐EM structure modeling.</description><subject>Annealing</subject><subject>Correlation coefficients</subject><subject>Global optimization</subject><subject>Modelling</subject><subject>Proteins</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkL9OwzAQhy0EEqUw8AaWWGBIOdtxEo9VVf5IRSwgsUXuxYZUSRxsZ-jGI_CMPAlpy8Ryp5M-_fS7j5BLBjMGwG83iDOec4AjMmGgskQV-dsxmQBTPCkyyU7JWQgbABAySyekmvd9U6OOteuosxRdZ51v97duaOg1Gqq7zuim7t5pdDR-GNp7F03d0RD9gHHwhrauMntiCLuJfut-vr6XT7TVfTgnJ1Y3wVz87Sl5vVu-LB6S1fP942K-SpBLiAnPlVCMS6vXgiFPizXmudVmrbiqpE0RuClA5WuUJrNCA6agFMo0raSqUi2m5PqQO_b7HEyIZVsHNE2jO-OGUPJCsiIbI8SIXv1DN27w48s7KmeFGJukI3VzoNC7ELyxZe_rVvttyaDc-S5H3-Xet_gFjTl0nQ</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Park, Jimin</creator><creator>Joung, InSuk</creator><creator>Joo, Keehyoung</creator><creator>Lee, Jooyoung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2654-712X</orcidid></search><sort><creationdate>20231115</creationdate><title>Application of conformational space annealing to the protein structure modeling using cryo‐EM maps</title><author>Park, Jimin ; Joung, InSuk ; Joo, Keehyoung ; Lee, Jooyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-27939125fab31c248bc77faeb929d5f4c02e8097bc5e6f3a0c4099c544d59d4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Correlation coefficients</topic><topic>Global optimization</topic><topic>Modelling</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jimin</creatorcontrib><creatorcontrib>Joung, InSuk</creatorcontrib><creatorcontrib>Joo, Keehyoung</creatorcontrib><creatorcontrib>Lee, Jooyoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jimin</au><au>Joung, InSuk</au><au>Joo, Keehyoung</au><au>Lee, Jooyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of conformational space annealing to the protein structure modeling using cryo‐EM maps</atitle><jtitle>Journal of computational chemistry</jtitle><date>2023-11-15</date><risdate>2023</risdate><volume>44</volume><issue>30</issue><spage>2332</spage><epage>2346</epage><pages>2332-2346</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo‐EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax ( FastRelax ) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo‐EM map and de novo protein modeling by tracing the Cryo‐EM map, was performed by CSA. In the refinement of the rigid‐fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross‐correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo‐EM structure modeling.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcc.27200</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2654-712X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2023-11, Vol.44 (30), p.2332-2346
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2851868093
source Wiley-Blackwell Read & Publish Collection
subjects Annealing
Correlation coefficients
Global optimization
Modelling
Proteins
title Application of conformational space annealing to the protein structure modeling using cryo‐EM maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20conformational%20space%20annealing%20to%20the%20protein%20structure%20modeling%20using%20cryo%E2%80%90EM%20maps&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Park,%20Jimin&rft.date=2023-11-15&rft.volume=44&rft.issue=30&rft.spage=2332&rft.epage=2346&rft.pages=2332-2346&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27200&rft_dat=%3Cproquest_cross%3E2871833914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-27939125fab31c248bc77faeb929d5f4c02e8097bc5e6f3a0c4099c544d59d4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871833914&rft_id=info:pmid/&rfr_iscdi=true