Loading…

Flexible optical fiber channel modeling based on a neural network module

Optical fiber channel modeling, which is essential in optical transmission system simulations and designs, is usually based on the split-step Fourier method (SSFM), making the simulation quite time-consuming owing to the iteration steps. Here, we train a neural network module termed NNSpan to learn...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2023-08, Vol.48 (16), p.4332-4335
Main Authors: Jiang, Rui, Wang, Zhi, Jia, Tao, Fu, Ziling, Shang, Chao, Wu, Chongqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c165t-17256938dc6992805816834bf1c99b31bfb94068c1e81d0ea3b444c59f0c292a3
container_end_page 4335
container_issue 16
container_start_page 4332
container_title Optics letters
container_volume 48
creator Jiang, Rui
Wang, Zhi
Jia, Tao
Fu, Ziling
Shang, Chao
Wu, Chongqing
description Optical fiber channel modeling, which is essential in optical transmission system simulations and designs, is usually based on the split-step Fourier method (SSFM), making the simulation quite time-consuming owing to the iteration steps. Here, we train a neural network module termed NNSpan to learn the transfer function of a single fiber (G652 or G655) span with a length of 80 km and successfully emulate long-haul optical transmission systems by cascading multiple NNSpans, which gives remarkable prediction accuracy, even over a transmission distance of 1000 km. Even when trained without erbium-doped fiber amplifier (EDFA) noise, NNSpan performs quite well when emulating the systems affected by EDFA noise. An optical bandpass filter can optionally be added after EDFA, making the simulation more flexible. Comparison with the SSFM shows that NNSpan has a distinct computational advantage, with the computation time reduced by a factor of 12. This method based on NNSpan could be a supplementary option for optical transmission system simulations, thus contributing to system designs as well.
doi_str_mv 10.1364/OL.491573
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2851870003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852006826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c165t-17256938dc6992805816834bf1c99b31bfb94068c1e81d0ea3b444c59f0c292a3</originalsourceid><addsrcrecordid>eNpd0D1PwzAQgGELgUQpDPwDSywwpPg79ogqSpEidYE5cpwLpLh2sRMB_55UZWK65dHp7kXompIF5Urcb6qFMFSW_ATNqOSmEKURp2hGqFCFkYado4uct4QQVXI-Q-uVh---8YDjfuid9bjrG0jYvdsQwONdbMH34Q03NkOLY8AWBxjTBAMMXzF9HMjo4RKdddZnuPqbc_S6enxZrotq8_S8fKgKR5UcCloyqQzXrVPGME2kpkpz0XTUGdNw2nSNEURpR0HTloDljRDCSdMRxwyzfI5uj3v3KX6OkId612cH3tsAccw105LqcvqPT_TmH93GMYXpuoNiUwLN1KTujsqlmHOCrt6nfmfTT01JfWhab6r62JT_AoYjZtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852006826</pqid></control><display><type>article</type><title>Flexible optical fiber channel modeling based on a neural network module</title><source>Optica Publishing Group Journals</source><creator>Jiang, Rui ; Wang, Zhi ; Jia, Tao ; Fu, Ziling ; Shang, Chao ; Wu, Chongqing</creator><creatorcontrib>Jiang, Rui ; Wang, Zhi ; Jia, Tao ; Fu, Ziling ; Shang, Chao ; Wu, Chongqing</creatorcontrib><description>Optical fiber channel modeling, which is essential in optical transmission system simulations and designs, is usually based on the split-step Fourier method (SSFM), making the simulation quite time-consuming owing to the iteration steps. Here, we train a neural network module termed NNSpan to learn the transfer function of a single fiber (G652 or G655) span with a length of 80 km and successfully emulate long-haul optical transmission systems by cascading multiple NNSpans, which gives remarkable prediction accuracy, even over a transmission distance of 1000 km. Even when trained without erbium-doped fiber amplifier (EDFA) noise, NNSpan performs quite well when emulating the systems affected by EDFA noise. An optical bandpass filter can optionally be added after EDFA, making the simulation more flexible. Comparison with the SSFM shows that NNSpan has a distinct computational advantage, with the computation time reduced by a factor of 12. This method based on NNSpan could be a supplementary option for optical transmission system simulations, thus contributing to system designs as well.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.491573</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Bandpass filters ; Computer networks ; Doped fibers ; Erbium ; Iterative methods ; Modelling ; Modules ; Neural networks ; Optical fibers ; Simulation ; Transfer functions</subject><ispartof>Optics letters, 2023-08, Vol.48 (16), p.4332-4335</ispartof><rights>Copyright Optical Society of America Aug 15, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c165t-17256938dc6992805816834bf1c99b31bfb94068c1e81d0ea3b444c59f0c292a3</cites><orcidid>0000-0002-0626-9241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Rui</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Jia, Tao</creatorcontrib><creatorcontrib>Fu, Ziling</creatorcontrib><creatorcontrib>Shang, Chao</creatorcontrib><creatorcontrib>Wu, Chongqing</creatorcontrib><title>Flexible optical fiber channel modeling based on a neural network module</title><title>Optics letters</title><description>Optical fiber channel modeling, which is essential in optical transmission system simulations and designs, is usually based on the split-step Fourier method (SSFM), making the simulation quite time-consuming owing to the iteration steps. Here, we train a neural network module termed NNSpan to learn the transfer function of a single fiber (G652 or G655) span with a length of 80 km and successfully emulate long-haul optical transmission systems by cascading multiple NNSpans, which gives remarkable prediction accuracy, even over a transmission distance of 1000 km. Even when trained without erbium-doped fiber amplifier (EDFA) noise, NNSpan performs quite well when emulating the systems affected by EDFA noise. An optical bandpass filter can optionally be added after EDFA, making the simulation more flexible. Comparison with the SSFM shows that NNSpan has a distinct computational advantage, with the computation time reduced by a factor of 12. This method based on NNSpan could be a supplementary option for optical transmission system simulations, thus contributing to system designs as well.</description><subject>Bandpass filters</subject><subject>Computer networks</subject><subject>Doped fibers</subject><subject>Erbium</subject><subject>Iterative methods</subject><subject>Modelling</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Optical fibers</subject><subject>Simulation</subject><subject>Transfer functions</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQgGELgUQpDPwDSywwpPg79ogqSpEidYE5cpwLpLh2sRMB_55UZWK65dHp7kXompIF5Urcb6qFMFSW_ATNqOSmEKURp2hGqFCFkYado4uct4QQVXI-Q-uVh---8YDjfuid9bjrG0jYvdsQwONdbMH34Q03NkOLY8AWBxjTBAMMXzF9HMjo4RKdddZnuPqbc_S6enxZrotq8_S8fKgKR5UcCloyqQzXrVPGME2kpkpz0XTUGdNw2nSNEURpR0HTloDljRDCSdMRxwyzfI5uj3v3KX6OkId612cH3tsAccw105LqcvqPT_TmH93GMYXpuoNiUwLN1KTujsqlmHOCrt6nfmfTT01JfWhab6r62JT_AoYjZtA</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Jiang, Rui</creator><creator>Wang, Zhi</creator><creator>Jia, Tao</creator><creator>Fu, Ziling</creator><creator>Shang, Chao</creator><creator>Wu, Chongqing</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0626-9241</orcidid></search><sort><creationdate>20230815</creationdate><title>Flexible optical fiber channel modeling based on a neural network module</title><author>Jiang, Rui ; Wang, Zhi ; Jia, Tao ; Fu, Ziling ; Shang, Chao ; Wu, Chongqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c165t-17256938dc6992805816834bf1c99b31bfb94068c1e81d0ea3b444c59f0c292a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bandpass filters</topic><topic>Computer networks</topic><topic>Doped fibers</topic><topic>Erbium</topic><topic>Iterative methods</topic><topic>Modelling</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Optical fibers</topic><topic>Simulation</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Rui</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Jia, Tao</creatorcontrib><creatorcontrib>Fu, Ziling</creatorcontrib><creatorcontrib>Shang, Chao</creatorcontrib><creatorcontrib>Wu, Chongqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Rui</au><au>Wang, Zhi</au><au>Jia, Tao</au><au>Fu, Ziling</au><au>Shang, Chao</au><au>Wu, Chongqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible optical fiber channel modeling based on a neural network module</atitle><jtitle>Optics letters</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>48</volume><issue>16</issue><spage>4332</spage><epage>4335</epage><pages>4332-4335</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Optical fiber channel modeling, which is essential in optical transmission system simulations and designs, is usually based on the split-step Fourier method (SSFM), making the simulation quite time-consuming owing to the iteration steps. Here, we train a neural network module termed NNSpan to learn the transfer function of a single fiber (G652 or G655) span with a length of 80 km and successfully emulate long-haul optical transmission systems by cascading multiple NNSpans, which gives remarkable prediction accuracy, even over a transmission distance of 1000 km. Even when trained without erbium-doped fiber amplifier (EDFA) noise, NNSpan performs quite well when emulating the systems affected by EDFA noise. An optical bandpass filter can optionally be added after EDFA, making the simulation more flexible. Comparison with the SSFM shows that NNSpan has a distinct computational advantage, with the computation time reduced by a factor of 12. This method based on NNSpan could be a supplementary option for optical transmission system simulations, thus contributing to system designs as well.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.491573</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0626-9241</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2023-08, Vol.48 (16), p.4332-4335
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2851870003
source Optica Publishing Group Journals
subjects Bandpass filters
Computer networks
Doped fibers
Erbium
Iterative methods
Modelling
Modules
Neural networks
Optical fibers
Simulation
Transfer functions
title Flexible optical fiber channel modeling based on a neural network module
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20optical%20fiber%20channel%20modeling%20based%20on%20a%20neural%20network%20module&rft.jtitle=Optics%20letters&rft.au=Jiang,%20Rui&rft.date=2023-08-15&rft.volume=48&rft.issue=16&rft.spage=4332&rft.epage=4335&rft.pages=4332-4335&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.491573&rft_dat=%3Cproquest_cross%3E2852006826%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c165t-17256938dc6992805816834bf1c99b31bfb94068c1e81d0ea3b444c59f0c292a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852006826&rft_id=info:pmid/&rfr_iscdi=true