Loading…
Ascorbic acid-loaded gellan-g-poly(ethylene glycol) methacrylate matrix as a wound-healing material
Ascorbic acid (AA) is one of the important biomolecules involved in all phases of wound healing. The aim of this study was to develop a new hydrogel system that offers topical delivery of ascorbic acid to wounds during wound care management. In this work, we grafted poly (ethylene glycol) methacryla...
Saved in:
Published in: | International journal of biological macromolecules 2023-11, Vol.251, p.126243, Article 126243 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ascorbic acid (AA) is one of the important biomolecules involved in all phases of wound healing. The aim of this study was to develop a new hydrogel system that offers topical delivery of ascorbic acid to wounds during wound care management. In this work, we grafted poly (ethylene glycol) methacrylate onto a renewable biopolymer gellan, and the graft copolymer (GPMA) formed was crosslinked covalently and ionically, and used as a matrix for delivering AA to the wounds. By the processes of grafting and crosslinking, the mechanical properties of the gellan increased several fold compared to mechanically weak native gellan. In vitro cytotoxicity evaluation showed that GPMA was non-cytotoxic to fibroblast cells. GPMA hydrogel matrix allowed the sustained release of AA. When AA was incorporated in GPMA, a significant improvement in wound closure was observed in scratch wound assay performed with keratinocytes. Since AA acts as a cofactor in collagen synthesis, the controlled delivery of AA to the wound microenvironment favors the up-regulation of colα1 gene expression. This study revealed that ascorbic acid, at a concentration of 150 μM, has a favorable impact on wound healing when tested in vitro. Overall results indicate that the GPMA matrix could be a promising material for wound healing applications. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.126243 |