Loading…

Potential functions in electromagnetic field problems

In two dimensional problems with the current flow in only one direction, the magnetic field can be solved by computing a scalar potential or one component of the vector potential. The general formulation for three dimensional solutions, including nonlinearities, is more complex and requires all thre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 1970-09, Vol.6 (3), p.513-518
Main Author: Sarma, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443
cites cdi_FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443
container_end_page 518
container_issue 3
container_start_page 513
container_title IEEE transactions on magnetics
container_volume 6
creator Sarma, M.
description In two dimensional problems with the current flow in only one direction, the magnetic field can be solved by computing a scalar potential or one component of the vector potential. The general formulation for three dimensional solutions, including nonlinearities, is more complex and requires all three components of the vector potential as well as a scalar potential for the description of the fields. It is the purpose of this paper to present a general systematic formulation at low frequencies in terms of potential functions for three dimensional numerical solutions of the nonlinear electro-magnetic field problems that include either nonlinear magnetic materials or nonlinear electric materials. Special cases of the magnetostatic as well as eddy-current problems are discussed.
doi_str_mv 10.1109/TMAG.1970.1066924
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28524797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1066924</ieee_id><sourcerecordid>28524797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqHwAxBLJrYUO3Hs3FhVUJCKYCiz5dpnZOQkJXYH_j2J0qHT6d29d0_6CLlndMkYhafd-2qzZCBHSYWAkl-QjAFnBaUCLklGKWsK4IJfk5sYf0bJa0YzUn_2CbvkdcjdsTPJ913MfZdjQJOGvtXfHSZvcucx2Pww9PuAbbwlV06HiHenuSBfL8-79Wux_di8rVfbwpTAUyFNA1BJzYSpUdbGjlsnpQVjnW64FWZfCWsqQctKCucsk4114PZMOgDOqwV5nP-Oxb9HjEm1PhoMQXfYH6Mqm7rkEuRoZLPRDH2MAzp1GHyrhz_FqJoAqQmQmgCpE6Ax8zBnPCKe-efrP7npYhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28524797</pqid></control><display><type>article</type><title>Potential functions in electromagnetic field problems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sarma, M.</creator><creatorcontrib>Sarma, M.</creatorcontrib><description>In two dimensional problems with the current flow in only one direction, the magnetic field can be solved by computing a scalar potential or one component of the vector potential. The general formulation for three dimensional solutions, including nonlinearities, is more complex and requires all three components of the vector potential as well as a scalar potential for the description of the fields. It is the purpose of this paper to present a general systematic formulation at low frequencies in terms of potential functions for three dimensional numerical solutions of the nonlinear electro-magnetic field problems that include either nonlinear magnetic materials or nonlinear electric materials. Special cases of the magnetostatic as well as eddy-current problems are discussed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1970.1066924</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conducting materials ; Dielectric materials ; Electromagnetic fields ; Frequency ; Integral equations ; Magnetic fields ; Magnetic materials ; Magnetic separation ; Nonlinear magnetics ; Remanence</subject><ispartof>IEEE transactions on magnetics, 1970-09, Vol.6 (3), p.513-518</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443</citedby><cites>FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1066924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sarma, M.</creatorcontrib><title>Potential functions in electromagnetic field problems</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In two dimensional problems with the current flow in only one direction, the magnetic field can be solved by computing a scalar potential or one component of the vector potential. The general formulation for three dimensional solutions, including nonlinearities, is more complex and requires all three components of the vector potential as well as a scalar potential for the description of the fields. It is the purpose of this paper to present a general systematic formulation at low frequencies in terms of potential functions for three dimensional numerical solutions of the nonlinear electro-magnetic field problems that include either nonlinear magnetic materials or nonlinear electric materials. Special cases of the magnetostatic as well as eddy-current problems are discussed.</description><subject>Conducting materials</subject><subject>Dielectric materials</subject><subject>Electromagnetic fields</subject><subject>Frequency</subject><subject>Integral equations</subject><subject>Magnetic fields</subject><subject>Magnetic materials</subject><subject>Magnetic separation</subject><subject>Nonlinear magnetics</subject><subject>Remanence</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAQhS0EEqHwAxBLJrYUO3Hs3FhVUJCKYCiz5dpnZOQkJXYH_j2J0qHT6d29d0_6CLlndMkYhafd-2qzZCBHSYWAkl-QjAFnBaUCLklGKWsK4IJfk5sYf0bJa0YzUn_2CbvkdcjdsTPJ913MfZdjQJOGvtXfHSZvcucx2Pww9PuAbbwlV06HiHenuSBfL8-79Wux_di8rVfbwpTAUyFNA1BJzYSpUdbGjlsnpQVjnW64FWZfCWsqQctKCucsk4114PZMOgDOqwV5nP-Oxb9HjEm1PhoMQXfYH6Mqm7rkEuRoZLPRDH2MAzp1GHyrhz_FqJoAqQmQmgCpE6Ax8zBnPCKe-efrP7npYhg</recordid><startdate>19700901</startdate><enddate>19700901</enddate><creator>Sarma, M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19700901</creationdate><title>Potential functions in electromagnetic field problems</title><author>Sarma, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><topic>Conducting materials</topic><topic>Dielectric materials</topic><topic>Electromagnetic fields</topic><topic>Frequency</topic><topic>Integral equations</topic><topic>Magnetic fields</topic><topic>Magnetic materials</topic><topic>Magnetic separation</topic><topic>Nonlinear magnetics</topic><topic>Remanence</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarma, M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarma, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential functions in electromagnetic field problems</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1970-09-01</date><risdate>1970</risdate><volume>6</volume><issue>3</issue><spage>513</spage><epage>518</epage><pages>513-518</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In two dimensional problems with the current flow in only one direction, the magnetic field can be solved by computing a scalar potential or one component of the vector potential. The general formulation for three dimensional solutions, including nonlinearities, is more complex and requires all three components of the vector potential as well as a scalar potential for the description of the fields. It is the purpose of this paper to present a general systematic formulation at low frequencies in terms of potential functions for three dimensional numerical solutions of the nonlinear electro-magnetic field problems that include either nonlinear magnetic materials or nonlinear electric materials. Special cases of the magnetostatic as well as eddy-current problems are discussed.</abstract><pub>IEEE</pub><doi>10.1109/TMAG.1970.1066924</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1970-09, Vol.6 (3), p.513-518
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_miscellaneous_28524797
source IEEE Electronic Library (IEL) Journals
subjects Conducting materials
Dielectric materials
Electromagnetic fields
Frequency
Integral equations
Magnetic fields
Magnetic materials
Magnetic separation
Nonlinear magnetics
Remanence
title Potential functions in electromagnetic field problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20functions%20in%20electromagnetic%20field%20problems&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Sarma,%20M.&rft.date=1970-09-01&rft.volume=6&rft.issue=3&rft.spage=513&rft.epage=518&rft.pages=513-518&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1970.1066924&rft_dat=%3Cproquest_cross%3E28524797%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-7c89937a16c5e75cd294f77d9cdfa84d6cb36dc3602376ffd178df9fb17f99443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28524797&rft_id=info:pmid/&rft_ieee_id=1066924&rfr_iscdi=true