Loading…

Performance predictions from a new optical amplifier model

We present results of a new model of semiconductor laser amplifiers which differs from previous analyses in that it includes the spectral dependence of material gain and spontaneous emission. The implications of low facet reflectivities are explored in some detail. For reflectivities below about 1 p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 1985-06, Vol.21 (6), p.609-613
Main Authors: Henning, I., Adams, M., Collins, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present results of a new model of semiconductor laser amplifiers which differs from previous analyses in that it includes the spectral dependence of material gain and spontaneous emission. The implications of low facet reflectivities are explored in some detail. For reflectivities below about 1 percent, the increased spontaneous emission imposes more stringent limits on current density than realized hitherto. If thermal runaway is to be avoided and gains in the range of 20-30 dB are to be achieved without excessive currents, then facet reflectivities on the order of 0.1-1 percent are probably optimal. Another consequence of including the spectral dependence is that wavelengths longer than that corresponding to the unsaturated gain peak are predicted to experience enhanced amplification at high input powers by comparison to shorter wavelengths.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.1985.1072709