Loading…
Effects of five-year field aged zeolite on grain yield and reactive gaseous N losses in alternate wetting and drying paddy system
Clinoptilolite zeolite has been widely used in agricultural production systems for enhancing water and fertilizer savings, mitigating greenhouse gas emissions, and increasing yield. However, there is little information on field-aged effects of zeolite on reactive gaseous N losses under alternate wet...
Saved in:
Published in: | The Science of the total environment 2023-12, Vol.904, p.166279-166279, Article 166279 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clinoptilolite zeolite has been widely used in agricultural production systems for enhancing water and fertilizer savings, mitigating greenhouse gas emissions, and increasing yield. However, there is little information on field-aged effects of zeolite on reactive gaseous N losses under alternate wetting and drying irrigation (AWD). We conducted a five-year field experiment to investigate field-aged effect of natural zeolite addition at 0 (Z0), 5 (Z5), and 10 (Z10) t ha−1 on reactive gaseous N losses (NH3, N2O), N-related global warming potential (GWPN), soil properties and grain yield under two irrigation regimes (CF: continuous flooding irrigation; AWD) in the 4th (2020) and 5th (2021) years since its initial application in 2017. As compared with CF, AWD did not significantly affect grain yield and NH3 volatilization but increased seasonal N2O emissions by 46 %–71 % over two years. Zeolite increased rice yield for five consecutive years. Z10 reduced averaged cumulative NH3 volatilization and GWPN by 23 % and 26 %, compared to zeolite-free treatment, respectively, in the 4th and 5th years. Soil NH4+-N was increased with the increased rate of Z application under both CF and AWD. Z10 increased soil NH4+-N by 27 %–38 % and NO3−-N by 14 %–22 % in five years, compared to Z0, respectively. Compared to AWD without zeolite, the addition of 10 t ha−1 zeolite under AWD lowered NH3 volatilization, cumulative N2O emissions, and GWPN by an average of 28 %, 29 %, and 30 % in two years, respectively. IAWDZ10 did not differ from ICFZ0 on reactive gaseous N losses but significantly lowered reactive gaseous losses relative to IAWDZ0. Therefore, zeolite addition could mitigate the reactive gaseous N losses and GWPN for at least five years after initial application, which is beneficial to promoting zeolite application and ensuring sustainable agriculture.
[Display omitted]
•Alternate wetting and drying irrigation increased N-related global warming potential (GWPN).•Zeolite addition mitigated the increase in GWPN caused by alternate wetting and drying irrigation.•Zeolite still increased yield and mitigated GWPN in the 4th and 5th years after its initial application. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.166279 |