Loading…
Microstructure and hardness studies of the electron beam welded zone of Hastelloy C-276
Electron beam welding (EBW) technique is becoming popular in nuclear, chemical and aerospace industries due to its high penetration depth and fast cooling rate. Samples of Hastelloy C-276 have been welded by electron beam (EB). A scanning electron microscope (SEM) having the attachment of an energy...
Saved in:
Published in: | Journal of alloys and compounds 2005-03, Vol.390 (1), p.88-93 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron beam welding (EBW) technique is becoming popular in nuclear, chemical and aerospace industries due to its high penetration depth and fast cooling rate. Samples of Hastelloy C-276 have been welded by electron beam (EB). A scanning electron microscope (SEM) having the attachment of an energy dispersive system (EDS) has been employed to study the resulting microstructure and micro-eutectic phases. The microstructure of the molten zone (MZ) is found to be of fine lamellar type. The hardness of the MZ is found to be 35% higher compared to as-received alloy. The micro-eutectoids are rich in Mo and W. The X-ray diffraction patterns of the MZ show shifting of peaks towards higher angle compared to the diffraction pattern of the as-received alloy. Broadening of the peaks is also observed in the diffraction pattern of the MZ. Formation of the μ-phase was observed in the MZ after a tempering treatment at 950
°C. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2004.08.031 |