Loading…

Grafting studies onto cellulose by atom-transfer radical polymerization

Styrene (Sty), methyl methacrylate (MMA), methacrylamide (MAm) and acrylomorpholine (AcM) were grafted onto powder cellulose by atom‐transfer radical polymerization. Cellulose chloroacetate (Cell‐ClAc), as a macro‐initiator, was first prepared by the reaction of chloroacetyl chloride with primary al...

Full description

Saved in:
Bibliographic Details
Published in:Polymer international 2005-02, Vol.54 (2), p.342-347
Main Authors: Coskun, Mehmet, Temüz, Mehmet Mürşit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Styrene (Sty), methyl methacrylate (MMA), methacrylamide (MAm) and acrylomorpholine (AcM) were grafted onto powder cellulose by atom‐transfer radical polymerization. Cellulose chloroacetate (Cell‐ClAc), as a macro‐initiator, was first prepared by the reaction of chloroacetyl chloride with primary alcoholic OH groups on powder cellulose. CuBr and 1,2‐dipiperidinoethane were used as a transition‐metal compound and as a ligand, respectively. These reactions were monitored by FT‐IR and weight increase in Cell‐ClAc. In case of styrene, although some weight increase occurred, no evidence of grafting could be observed in the FT‐IR spectrum, while there were strong evidence of grafting with MMA, MAm and AcM. Cell‐graft‐MAm, Cell‐graft‐AcM and Cell‐graft‐MMA showed new carbonyl bands at 1665, 1640 and 1735 cm−1, respectively. Dye‐uptake and dye‐absorption properties of cellulose, for alizarin yellow (basic dye) and bromocresol green (acidic dye), and its moisture‐ and water‐uptake capacities improved with the grafting, but some decrease was observed in thermal stability. Copyright © 2004 Society of Chemical Industry
ISSN:0959-8103
1097-0126
DOI:10.1002/pi.1684