Loading…

A new solvent-free pathway for inducing quaternized lignin-derived high molecular weight polymer

In this work, kraft lignin (KL) was polymerized with vinylbenzyl chloride (VBC) in a molar ratio of 1.8:1 (KL: VBC) using sodium persulfate (Na2S2O8) as an initiator at pH 9–10 and temperature of 80–90 °C for 3 h to produce polymer kraft lignin-g-poly(4-vinylbenzyl chloride) KL-poly(VBC) 1. Then, th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2023-12, Vol.252, p.126382-126382, Article 126382
Main Authors: Saini, Preety, Gao, Weijue, Soliman, Ahmed, Fatehi, Pedram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, kraft lignin (KL) was polymerized with vinylbenzyl chloride (VBC) in a molar ratio of 1.8:1 (KL: VBC) using sodium persulfate (Na2S2O8) as an initiator at pH 9–10 and temperature of 80–90 °C for 3 h to produce polymer kraft lignin-g-poly(4-vinylbenzyl chloride) KL-poly(VBC) 1. Then, the grafting reaction was conducted with two different imidazole-based monomers of different side-chain lengths (methyl and n-butyl), namely, 1-methylimidazole (MIM), 1-n-butylimidazole (BIM), which led to the formation of novel polymers, kraft lignin-g-poly(4-vinylbenzyl-1-methylimidazolium chloride) KL-poly(VBC-MIM) 2a and kraft lignin-g-poly(4-vinylbenzyl-1-n-butyl imidazolium chloride) KL-poly(VBC-BIM) 2b. The polymer 2a generated a larger molecular weight polymer with a higher charge density and solubility than polymer 2b since the n-butyl group would cause steric hindrance and weaker monomer to react with intermediate polymer 1 in the second stage. The contact angle analysis confirmed more hydrophilicity of polymer 2a, and elemental analysis confirmed the more successful polymerization of polymer 2a. Applying the generated polymers as flocculants for a kaolin suspension confirmed that polymer 2a had similar performance with commercial cationic polyacrylamide (CPAM) flocculants, even though polymer 2a had a smaller molecular weight. This polymerization offers a promising pathway for generating cationic polymers with excellent performance as a flocculant for suspensions.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.126382