Loading…
Positive streamer propagation in large oil gaps: electrical properties of streamers
This paper presents experimental data and calculations concerning the electrical properties of positive streamers in mineral oil at large gaps and HV. The experiments concern the measurement of charge, electric field, and the determination of the potential drop along streamers, either in the liquid...
Saved in:
Published in: | IEEE transactions on dielectrics and electrical insulation 1998-06, Vol.5 (3), p.371-381 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents experimental data and calculations concerning the electrical properties of positive streamers in mineral oil at large gaps and HV. The experiments concern the measurement of charge, electric field, and the determination of the potential drop along streamers, either in the liquid alone, or for streamers guided within insulating tubes. Calculations of charge and field distribution around streamers are carried out by charge simulation. To do this, streamers are represented by objects with simple shapes (spheres or cylinders) equivalent to their macroscopic aspect. These models lead to a correct agreement with measured streamer charge and field on the plane electrode. Qualitative correlations are established between calculated field distributions and streamer behavior such as velocity, transitions between propagation modes. It is also concluded that the potential drop in streamers and branching both act as regulating mechanisms that help to keep the streamer tip field, and hence the velocity, constant over a wide voltage range. |
---|---|
ISSN: | 1070-9878 1558-4135 |
DOI: | 10.1109/94.689426 |