Loading…
A Layered Genetic Design Enables the Yeast Galactose Regulon to Respond to Cyanamide
The commonly used expression systems in Saccharomyces cerevisiae typically rely on either constitutive or galactose-regulated promoters. The lack of inducible systems in S. cerevisiae limits the precise temporal regulation of protein function and yeast metabolism. We herein repurposed the galactose-...
Saved in:
Published in: | ACS synthetic biology 2023-09, Vol.12 (9), p.2783-2788 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The commonly used expression systems in Saccharomyces cerevisiae typically rely on either constitutive or galactose-regulated promoters. The lack of inducible systems in S. cerevisiae limits the precise temporal regulation of protein function and yeast metabolism. We herein repurposed the galactose-regulated system to make it respond to cyanamide. By using a cyanamide-inducible DDI2 promoter to control Gal4 expression in CEN.PK2–1C with Δgal80, a tight and graded cyanamide-inducible GAL system with an enhanced signal output was constructed. Subsequently, we demonstrated that the cyanamide-inducible GAL system was capable of tightly regulating the pentafunctional Aro1 protein to achieve conditional shikimate pathway activity. Taken together, the cyanamide-inducible GAL system could be implemented for both fundamental research and applied biotechnology. |
---|---|
ISSN: | 2161-5063 2161-5063 |
DOI: | 10.1021/acssynbio.3c00241 |